Browse > Article
http://dx.doi.org/10.3795/KSME-B.2004.28.9.1101

Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame  

Lee, Eui-Ju (건설기술연구원 화재 및 설비 연구부)
Shin, Hyun-Joon (한국과학기술원 화재 및 설비 연구부)
Oh, Kwang-Chul (한국과학기술원 기계공학과)
Shin, Hyun-Dong (한국과학기술원 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.28, no.9, 2004 , pp. 1101-1109 More about this Journal
Abstract
Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.
Keywords
Inverse Diffusion Flames; Incipient Soot; Residence Time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ Burke, S. P.;Shumann, T. E. W. ] / Ind. Eng. Chem.
2 Soot Inception in a Well-Stirred Reactor /
[ Blevins, L. G.;Lee, E. J. ] / The Third U.S. Joint Meeting on Combustion
3 Blevins, L. G. and Lee, E. J., 2003, 'Soot Inception in a Well-Stirred Reactor,' The Third U.S. Joint Meeting on Combustion, Chicago, U.S
4 Dobbins, R. A., Fletcher, R. A. and Lu, W., 1995, 'Laser Microprobe Analysis of Soot Precursor Particles and Carbonaceous Soot,' Combust. Flame, Vol. 100, pp. 301-309   DOI   ScienceOn
5 Richter, H. and Howard, J. B., 2000, 'Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot-A Review of Chemical Reaction Pathways,' Proc. Comb. Inst., Vol. 26, pp. 565-608   DOI   ScienceOn
6 Glassman, I., 1988, 'Soot Formation in Combustion Process,' Proc. Comb. Inst., Vol. 22, pp. 295-311
7 Kennedy, I. M., 1997, 'Models of Soot Formation and Oxidization,' Prog. Energy Combust. Sci., Vol. 23, pp. 95-132   DOI   ScienceOn
8 Dobbines, R. A., Fletcher, R. A. and Chang, H. C., 1998, 'The Evolution of Soot Precursor Particles in a Diffusion Flame,' Combust. Flame, Vol. 115, pp. 285-298   DOI   ScienceOn
9 Blevins, L. G., Fletcher, R. A., Benner, B. A., Steel E. B. and Mulholland, G. W., 2002, 'The Existence of Young Soot in the Exhaust of Inverse Diffusion Flames,' Proc. Comb. Inst., Vol. 29, pp. 2325-2333   DOI   ScienceOn
10 Santoro, R. J., Yeh, T. T., Horvath, J. J. and Semerjian, H. G., 1987, 'The Transport and Growth of Soot Particles in Laminar Diffusion Flames,' Combust. Sci. and Tech., Vol. 53, pp. 89-115   DOI   ScienceOn
11 Bockhorn, H., 1994, Soot formation in Combustino, Mechanism and Models, Spring Verlag, Berlin
12 Kang, K. T., Hwang, J. Y. and Chung, S. H., 1997, 'Soot Zone Structure and Sooting Limit in Diffusion Flames: Comparison of Counterflow and Co-Flow Flames,' Combust. Flame, Vol. 109, pp. 266-281   DOI   ScienceOn
13 Dobbins, R. A., 2002, 'Soot Inception Temperature and the Carbonization Rate of Precursor Particles,' Combust. Flame, Vol. 130, pp. 204-214   DOI   ScienceOn
14 Leonard, S., Mulholland, G. W., Puri, R. and Santoro, R. J., 1994, 'Generation of CO and Smoke During Underventilated Combustion,' Combust. Flame, Vol. 98. pp. 20-34   DOI   ScienceOn
15 Wu, K. T. and Essenhigh, R. H., 1984, 'Mapping and Structure of Inverse Diffusion Flames of Methane,' Proc. Comb. Inst., Vol. 20, pp. 1925-1932
16 Sidebotham, G. W. and Glassman, I., 1992, 'Flame Temperature, Fuel Structure, and Fuel Concentration Effects on Soot Foemationin Inverse Diffusion Flames,' Combust. Flame, Vol. 90, pp. 269-283   DOI   ScienceOn
17 Kazuhiro, H., Kenji, A., Taku, M., Keiji, S. and Masataka, A., 2002, 'PAH Measurement in a Propane Diffusion Flame by Using a LIF,' Proc. Japanese Combustion Symposium, Vol. 40, pp. 393-394
18 Kaplan, C. R. and Kailasanath, K., 2001, 'Flow-Field Effects on Soot Formation in Normal and Inverse Methane-Air Diffusion Flames,' Combust. Flame, Vol. 124, pp. 275-294   DOI   ScienceOn
19 Zelepouga, S. A., Saveliev, A. V., Kennedy, L. A. and Fridman, A. A., 2000, 'Relative Effect of Acetylene and P AHs Addition on Soot Formation in Laminar Diffusion Fiames of Methane with Oxygen and Oxygen-Enriched Air,' Combust. Flame, Vol. 122, pp. 76-89   DOI   ScienceOn
20 Hart, S. J., Hall, G. J. and Kenny, J. E., 2002, 'A Laser-Induced Fluorescence Dual-Fiber Optic Array Detector Applied to the Rapid HPLC Separation of Polycyclic Aromatic Hydrocarbon,' Anal. Bioanal Chem., Vol. 372, pp. 205-215   DOI   ScienceOn
21 Burke, S. P. and Shumann, T. E. W., 1928, Ind. Eng. Chem., Vol. 20, pp. 998-1004   DOI