• Title/Summary/Keyword: air-flow system

Search Result 2,495, Processing Time 0.027 seconds

Influence of coal and air flow rate distribution on gasification characteristics in 200 t/d scale MHI coal gasifier (200 t/d급 MHI 석탄 가스화기의 석탄 및 공기 배분에 따른 가스화 특성 평가)

  • Doh, Yunyoung;Ye, Insoo;Kim, Bongkeun;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.93-96
    • /
    • 2015
  • Commercial coal gasifiers typically use entrained flow type reactors, but have unique features in terms of reactor shape, gasifying agent, coal feeding type, ash/slag discharge, and reaction stages. The MHI gasifier is characterized as air-blow dry-feed entrained reactor, which incorporates a short combustion stage at the bottom and a tall gasification stage above. This study investigates the flow and reaction characteristics inside a MHI gasifier by using computational fluid dynamics (CFD) in order to understand its design and operation features. For its pilot-scale system at 200 ton/day capacity, the distribution of coal and air supply between the two reaction stages was varied. It was found that the syngas composition and carbon conversion rate were not significantly influenced by the changes in the distribution of coal and air supply. However, the temperature, velocity and flow pattern changed sensitively to the changes in the distribution of coal and air supply. The results suggest that one key factor to determine the operational ranges of coal and air supply would be the temperature and flow pattern along the narrower wall between the two reaction stages.

  • PDF

Study on the Relationship between Indoor $CO_2$ Concentration and Local Mean Air-age in the Lecture Room with System Air-conditioner and Ventilation Unit for Cooling Loads (냉방시 시스템에어컨과 환기유닛 적응 강의실에서 실내 $CO_2$ 농도와 국소평균공기연령 연구)

  • Jang Jae-Soo;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.736-745
    • /
    • 2005
  • This study is undertaken to evaluate the relationship between the indoor $CO_2$ concentration and the local mean air-age in the lecture room with the occupants. We conducted the experiments to examine the indoor $CO_2$ concentration and the local mean air-age with respect to the supply airflow of the ventilation system and the discharge angle and air-flow of the system air conditioner. Through the experiments, we found out that indoor $CO_2$ concentrations calculated by the prediction equation of Seidel are about 350 ppm lower than those measured by the experiments. The indoor $CO_2$ concentration is not related with the air-flow and the discharge angle of the system air-conditioner, but with the ventilation airflow. From the numerical calculation, the indoor $CO_2$ concentration is not related with the ventilation effectiveness, but strongly with the local mean air-age. In case of our model, the indoor $CO_2$ concentration is likely to fall within the acceptable air quality when the local mean air-age is averagely predicted under 400 seconds.

Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower (냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석)

  • Lee Jung-Hee;Choi Young-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

Study on the flow characteristics and heat transfer enhancement on flat plate in potential core region of 2-dimensional air jet (포텐셜 코어내에 설치된 충돌평판상의 열전달증진 및 유동특성에 관한 연구)

  • 이용화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.193-201
    • /
    • 1998
  • A heat exchanging system employing the impinging air jet is still widely used In the various fields due to its inherent merits that include the easiness in engineering applications and the high heat and/or mass transfer characteristics. The purpose of this study is to investigate the enhancement of heat transfer and flow characteristics by placing a turbulence promoters in front of heat exchanging surface. In this study, a series of circular rods are placed at the upstream of a flat plate heat exchanger that is located at potential core region(H/W=2) of a two-dimensional impinging air jet. Heat transfer enhancement is achieved by inserting turbulence promoter that results in the flow acceleration and disturbance of boundary layer. The average Nusselt number of the flat plate with the turbulence promoters is found to be around 1.42 times higher than that of the flat plate without the turbulence promoters. Based on the results of flow visualization with a smoke wire, it is confirmed that the heat transfer enhancement is caused by the flow separation and disturbance of boundary layer by inserting the turbulence promoter.

  • PDF

A Study of Static Pressure Differential Measurement of Nozzle for Miniaturization of a Air Flow Meter (풍량 측정 장치 소형화를 위한 노즐 정압차 측정 연구)

  • Oh, Sang-Teak;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.414-419
    • /
    • 2016
  • Air flow measurement is a fundamental and important task for testing, adjusting, and balancing of HVAC system. However, it is difficult to carry out in the field due to the large size and weight of the flow meter. In this study, for the purpose of developing a small and portable flow meter, we proposed a different method of static pressure measurement and verified it experimentally. In the proposed method, static pressure difference was measured by inserting a tube inside the chamber before and after the nozzles. The results were compared with measurements according to the ANSI/ASHRAE standard. The results were in good agreement, indicating that the inserted tube method could be used for static pressure measurement of a portable flow meter. The proposed method eliminates the pressure tubes that are attached outside, which results in smaller size and easy handling.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

A Study on Numerical Analysis and Performance Improvement of Ventilation Systems in Coating Room (코팅 룸 배기시스템 수치해석 및 성능개선에 대한 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2086-2091
    • /
    • 2013
  • One of the most important objects for the industrial ventilation is to protect worker's health from the harmful substances. Mainly in industrial ventilation, the harmful substances broken out through manufacturing process are to be quickly emitted outside. Recently the importance of the industrial ventilation increases with the recognition change of industrial ventilation from manufacturing focusing to human focusing. In this paper, the air flow simulation inside the coating room is performed. All the coating room and the ventilation system are modeled by SolidWorks program and air flow distribution and ventilation performance are analyzed by Flow simulation program. And the air flow directions and the air flow velocities inside the coating room are enhanced with the use of local ventilation.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

Study on Analysis of Buoyancy Effect in Air-heating Collector using Solar Heat (태양열을 이용한 공기가열 집열기의 부력효과 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.467-474
    • /
    • 2021
  • The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.

Two-Phase Flow through a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.28-39
    • /
    • 2006
  • Two-phase flow through a T-junction has been studied by numerous researchers so far. The dividing characteristics of the gas and liquid phases at the T-junction are very complicated due to a lot of related variables. The prediction models have been suggested by using experimental data for a specific condition or working fluid. But, they showed the application limitation for the most of the other conditions or fluids. Since most of them are applicable for their own experimental range, the generalized model for the wide range of conditions and fluids is needed. Even though it's not available now, some of the models developed for air-water flow at a T-junction might be applicable for the part of refrigerants with some modifications. Especially, for the two-phase flow of refrigerants at the T-junction, very few studies have been performed. Further experimental study is required to be performed for the wide range of test conditions and fluids to predict properly the two-phase flow distribution and phase separation through the T-junction.