• Title/Summary/Keyword: air-dried board

Search Result 9, Processing Time 0.025 seconds

Comparisons of Rates of Air Drying and Shed Drying for Chestnut and Paulownia Soundboards (밤나무와 오동나무 향판용재(響板用材)의 옥외(屋外) 옥내(屋內) 천연건조(天然乾燥) 속도(速度)의 비교(比較))

  • Jung, Hee-Suk;Yoo, Tae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.577-583
    • /
    • 1998
  • Chestnut and paulownia boards for the traditional musical instruments were air dried to compare moisture contents(MC), drying rates and drying times between the air drying for 70 days in a yard and the shed drying for 150 days in a closed shed when piled in early June. An average final MC and the drying rate of chestnut boards were 20.6 percent and 0.78%/day for the air drying, and 16.6 percent and 0.44%/day for the shed drying. An average final MC and the drying rate of paulownia boards were 16.7 percent and 1.53%/day for the air drying, and 13.5 percent and 0.77%/day for the shed drying. Drying rates of air-dried boards were nearly twice as high as those of shed-dried boards for both species. Air drying rates of chestnut and paulownia boards were very high and exhibited falling drying rate above the fiber saturation point(30%), and then decreased irregularly. However, shed drying rates of chestnut and paulownia boards were high and exhibited falling drying rate above 55 percent MC for chestnut boards and above 80 percent MC for paulownia boards, and then decreased irregularly.

  • PDF

Studies on the new manufacturing process and physical, mechanical properties of barkboard (수피(樹皮)보드의 새로운 제조방법(製造方法)과 그 물리기계적(物理機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.26-34
    • /
    • 1989
  • This study was carried out to manufacture bark board from oak bark by new processes and to examine the physical and mechanical properties of the board. This process with no addition of adhesive used higher pressure and temperature than the conventional one and was applied with or without paraformaldehyde. The results are as follows: 1. The new manufacturing process allowed a good bark board with high absorption coefficient. 2. The best manufacturing process for the mechanical properties of bark board was paraformaldehyde 10%-$250^{\circ}C$-100kg/$cm^2$-3 minutes, (bending strength 40kg/$cm^2$, internal bonding strength 2kg/$cm^2$) and the best manufacturing process for both the mechanical properties of bark board and economic point of view was $250^{\circ}C$-100kg/$cm^2$-3 minutes (bending strength 28kg/$cm^2$, internal bonding strength 1.52kg/$cm^2$). 3. Bark board showed specific gravities from 0.94 to 1.03 and air dried moisture content 9.2% to 11.7%, but Bark board needed paraffin wax emusion treatment. 4. The absorption coefficient of bark boards had two peaks along with frequency; one in 200-400 cps, the other 1200-2000 cps. The former was low but the latter great.

  • PDF

Measuring Temperature on Wood Surface at the Beginning of Drying Using IR Image Measuring System (적외선 화상처리 장치를 이용한 건조초기 목재 표면 온도 측정)

  • Lee, Kwan-Young;Kang, Ho-Yang;Lee, Min-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.79-85
    • /
    • 2006
  • Temperature of board surface was monitored during drying using an IR image measurement system. Boards were water-saturated and dried at the levels of four temperatures and three air velocities. At higher DB the surface temperature increased more steeply and level off period was significantly short. At the DB temperatures of 70, 80, $90^{\circ}C$ the period where the surface temperature was equivalent to WB temperature was constant regardless of air velocity while at $60^{\circ}C$ it decreased as air velocity increased. It was confirmed that a surface transfer coefficient increased with DB temperature. Variation of temperature profile on a wood surface increased with DB temperature and air velocity.

  • PDF

High-temperature Drying of Southern Pine Lumber by Green sorting (건조전(乾燥前) 선별(選別)에 의한 Southern pine재(材)의 고온건조(高溫乾燥))

  • So, Won-Tek;Taylor, Fred W.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.51-60
    • /
    • 1992
  • This study was performed to investigate the effect of green sorting before drying on the high-temperature drying characteristics of southern yellow pine dimension lumber(2"${\times}$6"${\times}$12'). To test the advantages of weight sorting, green lumber was seperated into heavy(above 55 1b), medium(50-55 1b), and light(below 50 1b)weight classes. Pieces in each weight class were subgrouped into high(above 35%) and low(below 30%) latewood groups. Groups were dried and seperated by a standard commercial high-temperature schedule; dry bulb temperature $245^{\circ}$ F, wet bulb temperature $180^{\circ}$ F, and air velocity 1200fpm. The results obtained were as follows; 1. There was a highly significant correlation between annual rings per inch(X) and percent-latewood(Y). The regression equation was Y=24, 5047+1.3272X. 2. There were highly significant correlations between either annual rings per inch($X_1$) or percent-latewood($X_2$) a.d specific gravity in green wood(Y). Their regression equations were Y=0.4260+0.0081$X_1$ and Y=0.3749+0.0029$X_2$, respectively. 3. Heavier weight charges dried more slowly than lighter weight charges. 4. Board-to-board variation in green or dry moisture content was less for all seperate weight classes than for unseperated control charges. 5. Lower latewood pieces had higher initial moisture content than higher latewood pieces, and then drying time for lower late wood pieces was longer than higher latewood pieces.

  • PDF

Effect of Low Pressure Steam Explosion Treatment on Prevention of Resin Exudation from Wood under High Temperature Surroundings (저압증기폭쇄(低壓蒸氣爆碎)처리가 고온영역(高溫領域)하에서의 목재(木材) 수지삼출(樹脂渗出) 예방에 미치는 영향)

  • Lee, Nam-Ho;Park, Hee-Jun;Li, Chengyuan;Jin, Young-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.9-18
    • /
    • 2004
  • This study was carried out to find the efficient methods for preventing resin exudation from spruce board during high temperature environment service.In the dry-air oven test, in-use temperature related to resin exudation of 110℃ could be obtained by the appropriate kiln drying without any special treatment, and the in-use temperature of the radio-frequency/vacuum (RF/V)-dried boards was about 20℃ higher than that of the conventional kiln-dried boards.In the autoclave test, resin exudation was not found from any board dried in the conventional kiln and in the RF/V kiln after the low pressure steam explosion (SE) treating, while for the control resin exudations were more severe in the autoclave test above 130℃ than in the dry-air oven test. It, therefore, would be suggested that resin exudation during high temperature service condition can be prevented more effectively by super-heated steaming green boards than by high-temperature drying boards with low moisture.

Comparison of Air-Drying Process in Four Seasons for Some Softwood Lumbers (침엽수(針葉樹) 제재(製材)의 4계절별(季節別) 천연건조(天然乾燥) 과정(過程)의 비교(比較))

  • Jung, Hee-Suk;Lee, Nam-Ho;Lee, June-Ho;Kwon, Ju-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 1997
  • Several thick board and dimension lumbers of Japanese larch(Larix leptolepis), Dahurian larch(Larix gmelini) and radiata pine(Pinus radiata) air-dried in four different seasons to compare air-drying process. Patterns of air-drying curves were influenced by climatological conditions and limber thickness. The initial drying rates of summer were the highest, followed those of fall, spring and winter. The drying times to equilibrium moisture contents for four seasons were nearly the same except for winter. However, the drying time for winter required twice more time than the other seasons. The drying time of dimension lumbers required 1.3 times more than boards. The final moisture contents were lowest during spring, highest during winter and similar between summer and fall.

  • PDF

Study on Press-drying of Italian Poplar Board and its Effect on Improvement of Wood Property (이태리포푸라재(材)의 건조성(乾燥性) 및 성질개선(性質改善)에 관(關)한 연구(硏究))

  • Jung, Hee Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.37 no.1
    • /
    • pp.17-30
    • /
    • 1978
  • Press drying was used on italian poplar (Populus euamericana) to find the profitable means of drying. This study was designed to investigate the process of platen drying considering core temperature, drying time, current moisture content, drying rate, shrinkage and recovery, and green volume specific gravity, equilibrium moisture content and dimensional stability of press dried material and air dried material, The drying tests were conducted using 1.5 centimeter thick material at platen temperature of $175^{\circ}C$. The results were summarized as follows. 1. Core temperature was divided into three stages of drying characterized by period initial heating, plateau temperature and rising core temperature. Plateau temperature was 114 to $119^{\circ}C$. 2. The following predicting equations of drying time(y) in different core temperatures were developed for initial thickness($x_1$), initial moisture content ($x_2$) and final moisture content ($x_3$) 3. The predicting equaltion of current moisture content(u) was log u=4.658-0.060t as funtion of drying time(t) and that of drying rate(r) was log r=-2.797-0.049t. Current moisture content and drying rate of air drying were shown in figure 2. 4. The predicting equation of shrinkage in thickness direction(y) was log y=1.933+0.038t as function of drying time(t), and that of expansion in width direction was $y=-0.692+0.043t-0.001t^2$. 5. Thickness shrinkage was increased more than proportional at to pressure increase. Width shrinkage and thickness recovery was greatest at 35psi. 6. Green volume specific gravity of press dried material was 25% greater than that of air dried material. But equilibrium moisture content of press dried material was less 24% than that of air dried material. Antishrinkage efficiency of press dried material were obtained 27.7%.

  • PDF

Investigation on The Cause of Interception of Regulated Pest from Imported Glue-laminated Boards Through In-situ Inspection of Their Manufacturing Processes (생산공정 현장실사를 통한 수입 집성재로부터 규제해충 검출 원인 조사)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Choi, Yong-Seok;Salim, Sabiha;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.617-621
    • /
    • 2016
  • On-site survey on glue-laminated board (GLB) manufacturers of Malaysia, Indonesia, and China was conducted to identify the cause of interception of regulated pest from imported GLBs from those countries, and to suggest optimal manufacturing processes of GLB for preventing quarantine risk associated with imported GLBs. The cause of pest interception was improper manufacturing processes, such as air drying or inadequate kiln drying of green laminae, improper storage of dried laminae before finger jointing and edge gluing, and/or incomplete packing of GLBs. In particular, Paulownia GLB manufacturing processes used in China, including air drying of laminae, were mostly poor in terms of preventing quarantine risk associated with imported GLBs. From now on, for preventing quarantine risk associated with imported GLBs, importers have to ask foreign manufacturers spontaneously to use proper manufacturing processes (adequate kiln drying of green laminae, proper storage of dried laminae, and complete packaging of final GLBs).

Estimation of Heat Sterilization Time of Chinese Laminae Species Used in The Production of Glue-laminated Board (집성재 제조용 중국산 층재 수종의 적정 열처리 시간 평가)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.760-766
    • /
    • 2016
  • This study explored the effects of heating temperature and laminae thicknesses on the time required to heat the center of air-dried Paulownia tomentosa, Pinus sp., Abies sp., and Larix sp. laminae to $56^{\circ}C$, which is a minimum core temperature of wood packaging materials defined by ISPM 15 standard, and maintain for 30 minutes in dry heat treatment schedule. Heating times were different among wood species and were Pinus sp. ${\geq}$ Abies sp. > Paulownia tomentosa > Larix sp. in decreasing order. The differences in heating times of some species were significantly different statistically, but were not different enough in practical terms to warrant heating four species separately. Heating times decreased as heating temperature increased and followed approximately power-function relationship. Also, heating times increased linearly with increasing laminae thickness. These relationships make it possible to calculate intermediate heating times relative to experimentally observed heating times. The results of this study will serve as a guideline for heat sterilization of Chinese laminae species to meet heat treatment requirements for protection against invasive pests.