• Title/Summary/Keyword: air-conditioner

Search Result 777, Processing Time 0.029 seconds

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner with high-head and long-line conditions (동시냉난방 시스템 에어컨의 고낙차 장배관 운전 신뢰성 평가)

  • Kim, Tae-An;Lee, Seung-Chan;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.609-614
    • /
    • 2008
  • The heating and cooling performance of system multi-air conditioner under high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with 22 different working conditions. Experimental results were prepared on the p-h diagram. Also the oil level in the compressor was normally maintained at the safety zone for the system multi-air conditioner with high-head and long-line conditions.

  • PDF

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

Cooling Performance Deficiency of Air Conditioning System According to Air Quantity Included in Refrigerant (냉매 내 공기혼입에 따른 에어컨 시스템의 냉각성능 저하)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.470-475
    • /
    • 2009
  • This study was performed to present the diagnosis basis of cooling performance deficiency according to air quantity included in refrigerant of air-conditioner by detecting the temperatures and pressures of refrigerant pipeline. The car air-conditioner of SONATA III (Hyundai motor Co., Korea) was tested by maximum cooling condition at 1500 rpm of engine speed in the room with controlled air condition at $33\sim35^{\circ}C$ and 55~57% RH. Measured variables were temperature differences between inlet and outlet pipe surface of the compressor (Tcom), condenser (Tcon), receive dryer (Trec) and evaporator (Teva), and high pressure (HP) and low pressure (LP) in the refrigerant pipeline, and temperature difference (Tcoo) between inlet and outlet air of the cooling vent of evaporator. Control variables were the refrigerant charging weight and the vacuum degree in the refrigerant pipeline before charging refrigerant. From the test, it was represented that the measuring values of (Tcom), LP and (Tcoo) were enabled to make the diagnosis of cooling performance deficiency according to quantity included in refrigerant of air-conditioner. The ranges of Tcom, LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively less than $55^{\circ}C$, more than 166.7 kPa-g(1.7 kgf/$cm^2$) and less than $13.7^{\circ}C$. In the case of using only external sensors and the condition under the normal performances of air conditioner, it was considered that the ranges of LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively more than 166.7 Pa and less than $12^{\circ}C$.

A Numerical Investigation of Indoor Air Quality with CFD

  • Sin V. K;Sun H. I
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.207-208
    • /
    • 2003
  • Increasing interest in indoor air quality (IAQ) control has been found because of its serious effect on human health. To evaluate IAQ, thermal comfort in terms of temperature and velocity distributions of indoor air has to be analyzed in detail. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In this paper, we present a discussion on the proper location of the air-conditioner in order to obtain good thermal comfort for occupant of a typical bedroom in Macao. A set of carefully designed numerical experiments is run with the Computational Fluid Dynamics (CFD) software FLOVENT 3.2 [1]. Reynolds averaged Navier-Stokes equations are solved with finite volume technique and turbulence effects upon the mean flow characteristics is modeled with the k - & model. Assumption of steady state environment is made and only convective and conductive heat transfer from the occupant and air-conditioner are being concerned.

  • PDF

Development of Fuzzy Controller for Air Conditioning of Grain Bin (곡물빈용 공기조화장치의 퍼지제어기 개발)

  • 최영수;문대식;정종훈
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.

Experimental Studies on the Stack Cooling Performance Using a $CO_2$ Air Conditioning System in Fuel Cell Vehicles (이산화탄소 에어컨 시스템을 이용한 연료전지 자동차의 스택 냉각성능에 대한 실험적 연구)

  • Kim, Sung-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The $CO_2$ air conditioning system installed in fuel cell vehicles could be used either for stack cooling or for cabin cooling, and thus was used for the stack cooling when additional stack heat release was required over a fixed radiator capacity for high power generation. This study investigated the performance of the stack cooling system using $CO_2$ air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed for the stack cooling system using an air conditioner and compared with the conventional radiator cooling system with/without cabin cooling. The heat release of the stack cooling system with the aid of $CO_2$ air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, the heat release of the stack cooling system using $CO_2$ air conditioner increased more by 7% than that of the conventional radiator cooling system without cabin cooling.

Cycle Simulation of the Air-Conditioner Using Alternatives to R22 (R22의 대체냉매를 사용한 공기조화기의 성능 시뮬레이션)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • Cycle simulation of the air-conditioner was carried out using a number of candidate alternatives to R22;R32/R125/R134a(30/10/60, by mass percent), R32/R125/R134a(10/70/20), R32/R134a(25/75), R32/R134a(30/70), R32/R125(60/40), R290(propane) and R134a. In this study, we considered only the basic parts of the air-conditioner such as the compressor, the evaporator, the condenser and the capillary tube, for the purpose of analysis. The performance characteristics of alternatives considered here were examined by comparing with the case using R22 at the constant volumetric flow rate condition. The results of our analysis revealed that the use of refrigerant mixtures, R32/R134a(30/70) and R32/R125/R134a(30/10/60), was appropriate for the alternatives to R22 in view of the cooling capacity and the COP. For the case of using R134a and R290, the COP was observed to increase under the same volumetric flow rate condition, but the cooling capacity was substantially decreased. Therefore the use of R134a and R290 should be accompanied with increasing considerably the size of compressor in order to maintain the same cooling capacity of R22.

  • PDF

The Experimental Study on Performance Improvement under frost conditions of the Heat Pump with Corrugate Shaped Fin and Two Compressors (저 착상 휜과 두 대 압축기 사이클을 이용한 히트펌프 난방성능 개선에 관한 연구)

  • Hwang Yoon-Jei;Cho Eun-Jun;Chung Baik-Young;Lee Gam-gue
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • This study presents the experimental study on improvement of frost/defrost performance in an heat pump system with newly developed fin and multiple compressors. As multiple compressors system, the variable and single speed compressor combinations has been introduced and compared with single speed 1-compressor system in a view point of improvement of frost/defrost performance. Also, newly developed corrugate shaped fin has been compared with conventional louver shaped fin. The frost/defrost performance is defined and some parameters are compared to discuss the effect of each combination. From this experimental study, it is known that if the variable and single speed compressor combination system equipped with corrugate shaped fin, the system performance has greatly improved not only for heating capacity, but also for frost performance.

Control of Compressor and Electronic Expansion Valve for a Tandom-type Air-conditioner (텐덤형 냉방시스템의 압축기와 전자팽창밸브 제어)

  • Jung, Nam-Chul;Han, Do-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.469-473
    • /
    • 2005
  • Capacities of a tandom-type air-conditioner may be modulated by turning on/off multiple compressors and adjusting positions of a electronic expansion valve. In this study. control algorithms for compressors and a electronic expansion valve were developed by using fuzzy’ logics. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature.

  • PDF