• Title/Summary/Keyword: air-breakdown

Search Result 234, Processing Time 0.033 seconds

Characteristics on the Breakdown and Frequency Spectrum of High Power Microwave Pulse Propagating through the Atmosphere (고출력 마이크로파 펄스의 대기권 전파시 방전 및 주파수 스펙트럼에 관한 특성)

  • Kim, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.591-597
    • /
    • 1999
  • The propagation characteristics of high power microwave pulse in an air-breakdown environment are examined. The maximum electron density produced by microwave air-breakdown is limited to $10^6cm^{-3}$ by the tail-erosion effect. Inorder to increase the electron density, the scheme using two pulses intersecting at a desired height is considered. Increasing the carrier frequency, it is shown that microwave pulse can be transferred without the serious erosion in the numerical simulation. This result is useful for the above scheme. Also, an experiment is conducted to show the tail-erosion effect and confirm that a rapidly generated lossy plasma can cause spectral breaking and frequency shift of a high-power microwave pulse. The experimental results are presented by comparing the frequency spectrum of an incident pulse with that of the pulse transmitted through a self-induced air-breakdown environment. The experimental results show that the amount of frequency upshift is co-related with the ionization rate, whereas that of frequency downshift is correlated with the energy losses from the pulse in the self-generated plasma.

  • PDF

A Study on the Lightning Impulse Dielectric Characteristics of Air for the Development of Air-Insulated High Voltage Apparatuses (고전압 전력기기 개발을 위한 기중 절연파괴특성 분석에 관한 연구)

  • Nam, Seok-Ho;Kang, Hyoung-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1005-1010
    • /
    • 2011
  • The accidents caused by dielectric instability have been increasing in power grid. It is important to enhance the dielectric reliability of a high voltage apparatus to reduce the damage from electrical hazards. To develop an electrically reliable high voltage apparatus, the experimental study on the electrical breakdown field strength is indispensable, as well as theoretical approach. In this paper, the lightning impulse breakdown characteristics considering utilization factors are studied for the establishment of insulation design criteria of an high voltage apparatus. The utilization factors are represented as the ratio of mean electric field to maximum electric field. Dielectric experiments are performed by using several kinds of sphere-plane electrode systems made of stainless steel. As a result, it is found that dielectric characteristics are affected by not only maximum electric field intensity but also utilization factors of electrode systems. The results are expected to be applicable to designing the air-insulated high voltage apparatuses.

The Tree Growth and Breakdown Characteristics of Unsaturated Polyester Dissolving the Electronegative Gases (부성기체를 용해시킨 불포화 폴리에스터의 Tree 성장과 절연파괴 특성)

  • 이보호;전춘생
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.178-184
    • /
    • 1992
  • This study treats the improvement of the dielectric strength of polymer by eliminating the air in it and dissolving electronegative gases. As experimental material, unsaturated polyester resin was used and the specimen was made by dissolving NS12T. SFS16T abd CCIS12TFS12T gases which have strong electron affinity. And also the electrical properties (tree growth and breakdown characteristics) of them were tested and discussed. The results are as follows. When the specimen dissolved with electronegative gas compared with one with air` 1) The tree breakdown voltage of the former is higher than that of the latter. 2) The tree growth of the former is slower than that of the latter. 3) The temperature dependence of the former is smaller than that of the latter. 4) The breakdown voltage of the specimen dissolved with electronegative gas is much higher than that dissolved with air.

Breakdown Characteristics of Air in the Gap between Line Conductor and Plane Electrode in Case of Combustion Flame on the Plane Electrode (선도체 대 평면전극 갭에서 평면전극에 연소화염 존재시 대기의 절연파괴 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Breakdown characteristics of air in the vertical arrangement of line conductor and plane electrode in case of combustion flame on the plane electrode are examined by the application of AC. and DC voltages to the gap. In order to investigate the effect of paraffin flame on the breakdown characteristics of air, flashover voltages are measured according to the variation of the gap length and the horizontal distance between the flame and the line conductor. As the result of the experiment, flashover voltages are substantially lowered down to 29.8% in case of the AC voltage, and 16.1% in case of the negative DC voltage, when in the presence of the flame. from 100% when in the absence of flame. Flashover voltages of air in the range of smaller than 3㎝ at the horizontal distance are increased in the proportion of the gap length and the horizontal distance in case of both AC and negative DC voltages. But before the flashover occurs, the flame is extinguished by such corona wind that is produced from the line conductor when the gap length and the horizontal distance reach to a certain degree. The effect of relative air density and the phenomenon of thermal ionization are analysed as the reduction factors of flashover voltages, due to high temperature of the flame.

Electrical Breakdown Characteristics of Composite Insulation Composed of Epoxy Resins with N2, Dry-air in Non-uniform Field (불평등 전계 시 에폭시와 N2, dry-air 혼합절연체의 절연파괴특성)

  • Jung, Hae-Eun;Park, Seong-Hee;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.462-463
    • /
    • 2007
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of composite insulation composed of epoxy resins with N2, air are studied in non-uniform field. The gap of needle to plane was 3mm, 5mm. The pressure of air, nitrogen was varied within the range of 0.1~0.6MPa. The thickness of a needle is 1mm and the curvature radius of the end of needle is 100um. The diameter of a plane made of the stainless steel is 50mm. As a result of the experiment, the breakdown voltage is increased about 3 times when epoxy resins is composited. The thickness of epoxy resins filled opposite to electrode concentrated electric field weakly influences on breakdown voltage.

  • PDF

Electrical Breakdown Characteristics of Epoxy and dry-air Composite Insulation (에폭시와 dry-air 혼합절연물의 절연파괴특성)

  • Jung, Hae-Eun;Oh, Jin-Heon;Lim, Jong-Nam;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1389-1390
    • /
    • 2007
  • SF6 gas used widely as insulating component is rising as the environment problem. Electrical breakdown characteristics of epoxy and dry-air composite insulation was investigated on thickness of epoxy and pressure of dry-air under non-uniform field. The gap of needle to plane was from 2mm to 5mm. The pressure of dry-air was varied within the range of $0.1{\sim}0.6$ MPa. The thickness of a needle was 1mm and the curvature radius of a needle end was 100um. The diameter of a plane made of the stainless steel was 50mm. As a result of the experiment, breakdown voltage was increased about 3 times when epoxy was used. The impact that the thickness of epoxy influences on breakdown voltage was poor. It needs suitable thickness computation because the insulating gap of the gas is short as epoxy thickness increases.

  • PDF

Breakdown Characteristics of Dry Air under 170[kV] GIB (170[kV] GIB 내에서 건조공기(Dry Air)의 절연파괴 특성)

  • Han, Ki-Son;Yoon, Jin-Yul;Ju, Hyung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.136-142
    • /
    • 2010
  • In this paper, we changed $SF_6$ insulation gases used already in the GIB(Gas Insulated Bus, gas insulated busbar) of switching appliances of power grid 170[kV] GIS(Gas Insulated Switchgear, Gas Insulated Switchgear) with green insulation dry air gases and studied dielectric breakdown voltage characteristics by the AC voltage withstand test. Withstand test AC voltage applied to the standard KEPCO's 170[kV] GIB with dry air insulation and and the equivalent of dry air and $SF_6$ gas were examined. Breakdown voltage of dry air, using an expression of the experiments were calculated and AC Withstand criterion of dry air insulation for the AC voltage test was derived. Using the criterion, dry air gases can be used instead of the $SF_6$ gas was confirmed in the factory acceptance test at 170[kV] GIB.

The Vortical Flow Field of Delta Wing with Leading Edge Extension

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.914-924
    • /
    • 2003
  • The interaction and breakdown of vortices over the Leading Edge Extension (LEX) - Delta wing configuration has been investigated through wing-surface pressure measurements, the off-surface flow visualization, and 5-hole probe measurements of the wing wake section. The description focused on analyzing the interaction and the breakdown of vortices depending on the angle of attack and the sideslip angle. The Effect of angle of attack and sideslip angle on the aerodynamic load characteristics of the model is also presented. The sideslip angle was found to be a very influential parameter of the vortex flow over the LEX-delta wing configuration. The introduction of LEX vortex stabilized the vortex flow, and delayed the vortex breakdown up to a higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas it was suppressed on the leeward side.

A Study on the Development of Optimal Alternative Selection Model to Renew Building Equipments System (건축설비시설의 갱신을 위한 최적 대체안 선정모델 개발에 관한 연구)

  • 윤동원;이정재;정광섭;한화택;정순성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.950-961
    • /
    • 2000
  • The objective of this study is to develop optimal alternative selection model for renewing building equipments system. Cost Breakdown Structure of LCC in HVAC systems are deduced from resonable data and factors. As for Cost Breakdown Structure of LCC in HVAC system, pertinent level, title, CBS number, and block number are determined efficiently. Especially, in addition to current cost factor, it is possible to make Cost Breakdown Structure using present worth method more clear. A model of POWER LCC ver 1.0 used to analyze primary cooling system, heating system, and air conditioning system are POWER LCC ver 1.0_/sub SYSTEM/ : C1+ C2- C3+ C4+ C5+ C6+ C7±C8+ C9- C10/sub -1/+ C10/sub -2/+ C10/sub -3/, and is implemented with consideration of Cost Breakdown Structure and their summation using present-worth method. It is programmed with one of scientific languages, MATLAB 5.3.

  • PDF

Breakdown Characteristics According to the Type & Gap of Rod-electrodes Using Imitation Air (제조공기를 이용한 봉전극의 형상 및 갭길이에 따른 절연파괴특성)

  • Lee, Jung-Keun;Lee, Su-Hyoung;Ahn, In-Seok;Jang, Jun-Oh
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this paper the experiments of breakdown characteristics of rod-electrodes by pressure and gap change of imitation-air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by imitation air which generates a lower lever of the global warming effect.