• Title/Summary/Keyword: air void

Search Result 264, Processing Time 0.026 seconds

An Effect Absorption Property of Compound Absorption Structure on the Membranous and the Back Resonator type (표면재 및 배후 다공질재의 유형에 따른 복합 흡음구조의 흡음특성)

  • 김태훈;주문기;오양기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.65-71
    • /
    • 2001
  • Absorbers such as porous materials and panels have limited absorption characteristics to some frequency bands. There is a need for absorbers with high absorption coefficients in a wide frequency ranges to make good response of room acoustics. This is almost impossible for a single absorption material. Composite absorption structure with cover, porous material. and air gap is known to have those wide frequency characteristics. In this basis. various composite absorption structures are measured and investigated as wide range absorption structures. Measurements are performed according to an international standard, ISO 354. Various surface types such as wooden slits, wood/steel perforated panels are selected as surface covers, and also various porous materials such as polyurethanes, polyesters, and glasswools are used inside the covers. Result shows that the area of void parts of surface materials is critical to high frequency absorptions, and thickness of air gaps are critical factor of the peak absorptions of low frequency bands.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구)

  • 강용혁;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

A Study on the PD Pulse Analysis and Noise Discrimination Method according to various sensors (센서에 따른 부분방전 펄스 분석 및 노이즈 제거 기법에 대한 연구)

  • Kim, Jeong-Tae;Rhee, Wook
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1469-1471
    • /
    • 2006
  • It is very important to discriminate noises such as air corona in measuring on-site partial discharges (PD). Therefore, in order to investigate the possibility of separating PD(partial discharge) and noises through the pulse analysis, pulse shapes measured by a resistive sensor and a HFCT were analyzed and PA(pulse analysis) were performed. For the purpose, the HFPD detection and PA system has been developed. Also void discharges and air corona were adopted as the artificial defect and noises, respectively.

  • PDF

Performance Evaluation of RAP and WMA Mixtures Located in MN/Road Test Cells through Air Voids Analyses (MN/Road 시험포장 구간내의 공기량 측정 및 결과값 분석을 통한 RAP 및 저온 아스팔트(WMA) 혼합물의 특성 평가)

  • Moon, Ki Hoon;Falchetto, Augusto Cannone;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.63-74
    • /
    • 2014
  • PURPOSES: This research is to evaluate the mechanical performance of different types of Hot Mix Asphalt (HMA) pavement cells prepared for MN/Road field testing section through an extensive experimental analysis of air voids and simple statistical evaluation tools (i.e. hypothesis test). METHODS: An extensive experimental work was performed to measure air voids in 82 asphalt mixture cores (238 samples in total) obtained from nine different types of road cell located in MN/Road testing field. In order to numerically and quantitatively address the differences in air voids among the different test Cells built in MN/Road, a simple statistical test method (i.e. t-test) with 5% significance was used. RESULTS: Similar trends in air voids content were found among the mixtures including conventional HMA, Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) combined with taconite aggregate this provides support to the use of RAP and WMA technology in the constructions of asphalt pavement. However, in case of acid modified HMA mixtures, significant differences in air void content were observed between on the wheel path and between wheel path location, which implies negative performances in rutting and thermal cracking resistances. Conclusions : It can be concluded that use of RAP and WMA technology in the construction of conventional asphalt pavement and the use of PPA (Poly Phosphoric Acid) in combinations with SBS (Styrene Butadiene Styrene) in asphalt binder production provide satisfactory performance and, therefore, are highly recommended.

An Experimental Study on NOx Degradation Efficiency and Physical Characteristics of Maximum Size 40 mm Porous Concrete (굵은골재 최대치수 40 mm 투수 콘크리트의 물리적 특성과 질소산화물 제거에 관한 연구)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Ryu, Seong-Pil;Choung, Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.431-438
    • /
    • 2006
  • The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relation-ships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and $y=0.42e^{0.28x}$. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.