• Title/Summary/Keyword: air void

Search Result 263, Processing Time 0.023 seconds

Effect of Surface Film on Void Behavior in Composite Integrated Structure (표면접착필름이 복합재 일체형 구조물에서의 기공 거동에 미치는 영향)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, void behavior of composite laminate by local internal pressure gradient due to structural geometry and surface film application condition was experimentally evaluated through fabrication of spar/skin integrated structure specimens. Viscosity comparison and thermal analysis for both carbon fiber prepreg and surface film were conducted and cure characteristic and rate difference were analyzed. 2 types of spar/skin integrated structural specimens were prepared based on different application condition of surface film. Subsequently, those specimens were evaluated through visual surface inspection, non-destructive and destructive inspection. In a specimen #1 with full application of surface film, low pressurized area of composite laminate created by pressure gradient of structural geometry had voids. It exhibited that voids could not be evacuated and were locked in cured laminate by the influence of pre-cured surface film with relatively faster cure rate. In a specimen #2 without surface film, it revealed that all internal voids disappeared in the cured laminate. Therefore, it is verified that surface film acts as barrier film preventing void movement and evacuation during autoclave cure.

Defect Diagnosis of Cable Insulating Materials by Partial Discharge Statistical Analysis

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.

Acoustic insertion loss by a bubble layer for the application to air bubble curtain and air masker (기포층 음향 삽입손실 연구: 기포커튼과 에어마스커)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • This paper derives the insertion loss for the bubble layer of an air bubble curtain and an air masker which are used to reduce ocean anthropogenic noise such as the piling noise and the ship noise. The air bubble curtain is considered as a 'fluid-air bubble layer-fluid' model and the environment for the air masker is simplified as an 'vacuum-thin plate-fluid-air bubble layer-fluid' model. The air bubble layer in each model is assumed as the effective medium which has the complex wavenumber and the complex impedance corresponding to the bubble population distribution. The numerical simulations are performed to examine the insertion loss depending on the bubble population, the void fraction, and the thickness of the layer.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

Spot Welding of Aluminum Alloys Using Servogun (서보건을 이용한 알루미늄 합금의 저항 점용접)

  • 임창식;장희석
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • Conventional method for electrode force application in resistance spot welding(RSW) processes is to use pneumatic cylinder. However, due to its inherent problems in pneumatic power system such as compressibility of air and poor transient response characteristics, new electrode force system with servo control are recently introduced in RSW machine. This machine is called “servogun”. The purpose of this study is to evaluate performance of servogun in case of spot welding of aluminum alloy. Aluminum alloy(A5052) sheets are spot welded using pneumatic gun and servogun. Both results are compared by means of macro cross-section etching test and tensile shear strength test. Numerous previous research have reported nugget with many voids and cracks are not uncommon defects in spot welds with aluminum alloy. The experimental results show similar defects in case of pneumatic gun. In contrast, use of servogun considerably reduced generation of voids and cracks. In case of step-wise increased forging force at the end of welding cycle with servogun, crack-free and void-free nuggets have been observed. The performance of servogun has been also verified by series of tensile shear test. Higher strength values have been achieved with servogun in comparison to that of pneumatic gun.

Application of Image Technique and Optical Fiber Sensor for Air-water Mixture Flow (기포흐름 측정을 위한 영상기법 및 광섬유센서 적용)

  • Ryu, Yonguk;Jung, Tae-Hwa
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.535-543
    • /
    • 2015
  • Measurements of multiphase flows containing bubbles have been limited because most existing methods target one phase flows. Especially, multiphase flows with a high void ratio have been rarely successful in measurements due to the sudden change of density and thick interfaces between air and water. This study introduces two methods that are capable of measuring flow fields regardless of bubble void ratio, named bubble image velocimetry and bundle fiber optic flow meter. The calculation of the depth of field is suggested to reduce and estimate errors by perspective image velocimetry. The bundle fiber optic flow meter is designed to increase a measurement rate using many optical fibers with a thin diameter. The two methods measured bubble plumes to test reliability and the velocity measurements show good agreement. In addition a hydraulic jump, one of the multiple flows in rivers was measured to test applicability of the methods.

Development of Pavement Distress Prediction Models Using DataPave Program (DataPave 프로그램을 이용한 포장파손예측모델개발)

  • Jin, Myung-Sub;Yoon, Seok-Joon
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.9-18
    • /
    • 2002
  • The main distresses that influence pavement performance are rutting, fatigue cracking, and longitudinal roughness. Thus, it is important to analyze the factors that affect these three distresses, and to develop prediction models. In this paper, three distress prediction models were developed using DataPave program which stores data from a wide variety of pavement sections In the United States. Also, sensitivity studies were conducted to evaluate how the input variables impact on the distresses. The result of sensitivity study for the prediction model of rutting showed that asphalt content, air void, and optimum moisture content of subgrade were the major factors that affect rutting. The output of sensitivity study for the prediction model of fatigue cracking revealed that asphalt consistency, asphalt content, and air void were the most influential variables. The prediction model of longitudinal roughness indicated asphalt consistency, #200 passing percent of subgrade aggregate, and asphalt content were the factors that affect longitudinal roughness.

  • PDF

Permeability Variation With Lift Thickness of Asphalt Pavement (아스팔트 포장의 시공 포설두께에 따른 투수계수 변화특성)

  • Park, Sang Hyun;Moon, Jun Ho;Bae, Seok Il;Kim, Young Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2229-2233
    • /
    • 2015
  • The permeability of HMA(hot mixed asphalt) is a major influencing factor for long-term performance of the pavement. Especially, the lift thickness of the pavement during construction causes a wide range of physical properties of HMA. This study investigates the correlationship between the lift thickness and the physical properties of HMA through a series of laboratory experiments. The specimens were cored from a construction site of the dense graded asphalt pavement. The cored samples have various lift thickness and the number of compaction for the study. The results of the study show that the permeability of the sample decreases with the apperant density and t/NMAS, and the air void ratio. Therefore, the commonly used construction method as a constant lift thickness regardless of conditions needs to be reconsidered.