• Title/Summary/Keyword: air vehicle

Search Result 1,556, Processing Time 0.027 seconds

A Study on the Verification of Air Cleaning Unit for Engine of Tracked Vehicle (궤도차량 엔진용 공기정화기 검증에 관한 연구)

  • Yi, Il-Lang;Kim, Sang-Boo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.445-452
    • /
    • 2020
  • The air cleaning unit of K00 IFV(or Infantry Fighting Vehicle) has important roles to make sure the engine of the vehicle works precisely as filtering foreign substances in the air such as dust and sands. The entire components including scavenge fan which is one of the important inner part of the air cleaning unit are developed so that we can produce it domestically and don't need to import it from P⁎⁎ Co., the original maker in United Kingdom. This paper introduces a few verification processes including cleaning efficiency and reliability. As this core unit has developed successfully the improvement of military strength and logistics support can be expected. And design capability, manufacturing skills, maintenance ability of tracked weapon system will be increased thanks to the accumulated technical knowledge obtained from this developing project. Foreign currency savings and reducing operational cost can be expected as well in military industry.

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

Development of Air Cutoff Valve for Improving Durability of Fuel Cell (연료전지 내구성능 향상을 위한 공기차단밸브 개발)

  • Park, Jeonghee;Lee, Changha;Kwon, Hyuckryul;Kim, Chimyung;Choi, Kyusung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

A Study on the Fail Safety Logic of Smart Air Conditioner using Model based Design (모델 기반 설계 기법을 이용한 지능형 공조 장치의 이중 안전성 로직 연구)

  • Kim, Ji-Ho;Kim, Byeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1372-1378
    • /
    • 2011
  • The smart air condition system is superior to conventional air condition system in the aspect of control accuracy, environmental preservation and it is foundation for intelligent vehicle such as electric vehicle, fuel cell vehicle. In this paper, failure analyses of smart air condition system will be performed and then sensor fusion technique will be proposed for fail safety of smart air condition system. A sensor fusion logic of air condition system by using CO sensor, $CO_2$ sensor and VOC, $NO_x$ sensor will be developed and simulated by fault injection simulation. The fusion technology of smart air condition system is generated in an experiment and a performance analysis is conducted with fusion algorithms. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance.

Design and Fabrication of Coaxial Rotorcraft-typed Micro Air Vehicle for Indoor Surveillance and Reconnaissance (실내감시정찰용 동축반전 헬리콥터형 미세비행체 설계 및 제작)

  • Byun, Young-Seop;Shin, Dong-Hwan;An, Jin-Ung;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1388-1396
    • /
    • 2011
  • This paper is focused on the procedure of the development of a micro air vehicle which has vertical take-off and landing capability for indoor reconnaissance mission. Trade studies on mission feasibility led to the proposal of a coaxial rotorcraft configuration as the platform. The survey to provide a guide for preliminary design were conducted based on commercial off-the-shelf platform, and the rotor performance was estimated by the simple momentum theory. To determine the initial size of the micro air vehicle, the modified conventional fuel balance method was applied to adopt for electric powered vehicle, and the sizing problem was optimized with the sequential quadratic programming method using MATLAB. The designed rotor blades were fabricated with high strength carbon composite material and integrated with the platform. The developed coaxial rotorcraft micro air vehicle shows stable handling quality with manual flight test in indoor situation.

Development and Evaluation of Ultraviolet C Sterilizer for Air Conditioning (공기 조화를 위한 자외선 C 살균기의 개발 및 평가)

  • Yun, Jung-Hyun;Sun, Ki-Ju;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1018-1022
    • /
    • 2011
  • Nowadays, with improvement of economical income and life qualities, life pattern changes have been brought such as increasing of avocational activities. Consequently, following those life trends, utilization of car is getting increased. Thus, the perceptions of car have been changed from the only means of transport in the past to a 2nd residental space. that is why the car's endo environmental factors are getting so important. Air conditioner regulating air ventilization in vehicle's indoor automatically sets the right temperature based on the differences of indoor and outdoor's temperature with development of advanced functions to provide better environmental qualities in vehicle. However, even those advanced techniques for functional development are got so diverse though, the essential technique for preventing the growth of bateria and mold inside of the air conditioner are not even severals. Especially, evaporator one of the vehicle air conditioning equipments generates cooled air by vaporizing refrigerant in liquid state with the water as the adduct for this reactions. It has structural difficulties for water vaporation then cause the growth of germs. That's why this reseach was focused on the way of eliminating germs in the vehicle air conditioner efficiently. Direct air sterilizer by using UVC(Ultraviolet C) is manufactured and that performances are evaluated.

Development of Brushless DC Motor for 0.5[kW] Air Compressor of Electric Vehicle (전기자동차용 0.5[kW]급 공기압축기의 브러시리스 직류전동기 개발)

  • Han, Man-Seung;Hong, Song-Ryul;Jo, Ju-Hee;Lee, Sang-Hun;Park, Seong-Jun;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.71-78
    • /
    • 2012
  • Recently, it is increased to apply sensorless drive for BLDC (Brushless DC) motor to maximize operating efficiency and fuel efficiency to an electrical component of (H)EV. Especially, Electric vehicle component promotes a fuel efficiency enhancement by the carbon dioxide emissions regulation of a vehicle becoming the principal of the environmental pollution globally, the oil price hike that continued increasingly. We suggested the air compressor which applied BLDC motor for electric vehicle component and compared suggested BLDC motor with the conventional DC motor. The experimental results show that the driving efficiency was increased and was inproved compressive force by suggested BLDC motor.

Shock and vibration analysis of a tractor-trailer type vehicle system with air suspension (공기 현가 장치를 장착한 트랙터-트레일러형 차량 시스템의 충격진동 해석)

  • 김종길;하태완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.15-22
    • /
    • 2000
  • Shock and vibration characteristics of a tractor-trailer type vehicle system with air suspension and air coupler running on a single bump road are investigated. The vehicle system is modelled and solved to two types of models, i.e. rigid-multi-body and flexible-multi-body model, by ADAMS and NASTRAN software. And the shock impulse is given by a single bump model on the road. When the analysis results of the rigid-multi-body model is compared with those of the flexible-multi-body model, it is revealed that the vibration and accelerations of the latter model are more repetitive and larger than the former.

  • PDF

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface (Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향)

  • 박종수;최병대;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.