• Title/Summary/Keyword: air traffic management

Search Result 250, Processing Time 0.03 seconds

Study of Optimization of Ground Vehicles Routes Aiming to Reduce Operational Costs and to Contribute to a Sustainable Development with the Reduction of Carbon Dioxide in the Atmosphere

  • Clecio, A.;Thomaz, F.;Hereid, Daniela
    • The Journal of Economics, Marketing and Management
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this paper is to discuss the methodology of optimizing delivery route scheduling using a capacity integer linear programming problem model developed to a previous case study. The methodology suggests a two-stage decision: the first, automatic, where the manager will obtain guidance generated by the solution of the linear programming model, later they could use post-optimization techniques to fine tune to the best operational solution. This study has the goal to reduce the size of service companies' ground transportation fleets, aiming not only to reduce costs and increase competitive advantages but also to lower levels of air pollution and its consequences, traffic and, therefore, the levels of carbon dioxide, allowing for a reduction in envir onmental disasters.

Prediction of spatial distribution of air pollutants within tunnel (터널 내 대기오염물질의 공간분포 예측)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Beom-Seok;Kang, Ho-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The need for management of tunnel air quality is imminent considering the rapid increase of number and span of tunnels in Korea. To investigate spatial distribution of $CO_2$ within tunnels, $CO_2$ were measured and model simulations were performed in Namsan 1 tunnel. Results show that $CO_2$ concentrations were 250 ppm to 400 ppm higher in the exit than tunnel entrance. Also, $CO_2$ concentrations were 200 ppm to 300 ppm lower inside no ventilating vehicle than in the tunnel. Both experimental and model simulation results show that spatial distribution and concentration gradient of air pollutant inside tunnel are highly dependent on traffic density.

Optimal Allocation of Three Modes for the Intercontinental Transportations of Mass-Market Products

  • Okita, Katsuhisa;Amemiya, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.294-302
    • /
    • 2010
  • There is a trend toward the world's manufacturing sites moving to East Asia. After manufacture, these products are transported to the advanced nations for their consumption demands. Among such advanced nations, the U.S.A. has the largest demand, and then Japan and European countries follow. It should be noted that the infrastructures of the Asian districts used for the production sites are rather limited, and the volume of products transported from these districts of Asia to the U.S.A is becoming tremendously large. This situation is causing very serious traffic problems. New products are required to be transported swiftly by air. Once the consumption and market demands are stable however, the products should be sent rather slowly, but in larger amounts. However, the airports of China are quite restricted in capacity, while the transportation volume is becoming large. As a result, transportation cost and the time required for transportation are increasing. Now, a third method is appearing. This is the so-called Sea and Air transportation. The cost and time in transit of this mode take mean positions between Air and Ocean services. At present there exists no well-thought-out strategy for how to allocate these three methods of transportation. This paper is an attempt to theoretically describe this mechanism and to discover the optimal way to allocate the three modes. For this purpose, several mathematical properties of value and cost of the products are defined, and on this basis a simulation of the transportation is established.

Indoor air quality evaluation in intercity buses in real time traffic

  • Kazim O. Demirarslan;Serden, Basak
    • Advances in environmental research
    • /
    • v.11 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • Road transport allows all forms of land conditions to be met at less cost. Because of this function, despite numerous disadvantages, it becomes the most frequently used method of transport, especially in underdeveloped or developing countries. One of the most significant factors used in evaluating the atmosphere's air quality is the amount of CO2, increasing people's density in indoor spaces. The amount of CO2 indoors is, therefore, vital to determine. In this study, CO2 and temperature measurements made on nine different bus journey was made in Turkey. The minimum and maximum values were recorded as 555 ppm and 3000 ppm CO2, respectively, in the measurements. On all journeys, the average concentration is 1088.72 ppm. The minimum and maximum values were measured as 17.4℃ and 32.7℃ in the temperature measurements, and the average of all trips was calculated to be 25.76℃. In this study conducted before the Covid-19 pandemic, it was determined that the amount of CO2 increased with the density and insufficient ventilation in the buses. The risk of infection increases in places with high human density and low clean air. For situations such as pandemics, CO2 measurement is a rapid indicator of determining human density.

A Study on Implementation Trend of Aviation System Block Upgrades(1) (ICAO의 ASBU(Aviation System Block Upgrades) 추진 동향(1))

  • Park, Bomi;Kim, Jun-hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.74-80
    • /
    • 2016
  • Development of air navigation and avionics technologies led to solve the problems that conventional ATM system had. The International Civil Aviation Organization developed the Aviation System Block Upgrades (ASBU) initiative in order to harmonize global ATM planning and technology upgrades and urged to implement the recommendations for the member States. The ASBUs provide the road map to assist air navigation service providers in the development of their individual strategic plans and investment decisions. In this paper, the operational concepts in 2 performance improvement areas, Airport Operations and Globally Interoperable System and Data in ASBUs, have been summarized. In Airport Operations area the new management technologies and required systems are presented for optimizing the traffic flow in airport area and terminal airspace. Data format standards and required systems presented for information integration and usage of the new system under Globally Interoperable System and Data area.

A Study on Separation Minima Determination based on Surveillance System Accuracy Performance (감시시스템 정확도 성능에 따른 항공기간 최소분리간격 설정에 관한 연구)

  • Lee, Hyo-Jin;Lee, Keum-Jin;Baik, Ho-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2012
  • A properly determined separation minima applied in Air Traffic Management(ATM) is critical for safe and efficient aircraft operations. The separation minima is primarily determined by the accuracy performance of surveillance system, and, due to the stringent aviation safety standard, the position accuracy of the surveillance system must be estimated with a high level of reliability. This study proposed a method for estimating the position accuracy of surveillance system with a relatively small amount of data by finding upper confidence limit instead of maximum likelihood values of unknown parameters. Through the proposed method, it is possible to determine a required separation minima with a more reliability in the face of data scarcity which often occurs when we implement a new surveillance system such as Automatic Dependent Surveillance-Broadcast (ADS-B).

The Study on Structures and Contents for Flight Information Service of Light Aircraft and Ultra-light Aircraft (경량항공기 및 초경량비행장치 비행정보서비스를 위한 구성체계 연구)

  • Choi, Hyunsik;Moon, Woochoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • The base of leisure air activities are consistently expanding and its demand is expected to increase attributed to GDP growth and people's interest in its activity. Utilizing Visual Flight Rule, light sport aircrafts and ultra-light aircrafts are not under the effect of air traffic control center, which resulted in passenger injury due to emergency landing for adverse weather conditions and technical issues after pulling into mountain area, ocean and even urban area. Such events encouraged safety consciousness toward leisure aircraft activities and developing a measure to prevent a recurrence of the accident. This research focuses on suggesting compositive system for preventive safety management system by providing user based Flight information service and operating effective system, necessary for leisure aircraft activities.

A Study of the Development Model for the Aerodrome Traffic Control Simulator System (국내 공항별 비행장 관제 시뮬레이터를 위한 구축 모델에 대한 연구)

  • Kim, Do-Hyun;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • This paper proposes the development model of the aerodrome traffic control simulator (ATCS) System for the domestic airport. The application of the ATCS is used as a OJT training function for the air traffic controller and research function for a new control procedure. In order to perform those functions, we classified the ATCS in three types such as education, research and integrated management system, and the ATCS types analysed by the working and OJT training condition in domestic airport. Therefore, we proposed the ATCS models such as uniform type, differential type, and center type, and analysed the merits and demerits of the proposed models. Also we looked up ATCS's application in terms of the building and maintenance costs, operational utilization and scalability. So, we proposed the differential type which was suitable for the developing ATCS for the domestic airports.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

Analysis of Communication Performance Requirements for Initial-Phase UAM Services (UAM 초기 운영을 위한 통신 성능 요구도 도출)

  • Young-Ho Jung;HyangSig Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.109-115
    • /
    • 2024
  • The Concept of Operations (ConOps) document issued by the Korean Government (K-UAM ConOps) for urban air mobility (UAM) services takes into account not only aviation voice communication but also the use of 4G and 5G mobile communication to support the initial phase of UAM services. This paper studies a methodology to establish communication performance requirements for UAM traffic management and presents the analyzed results for communication performance requirements. To accomplish this, the operational scenarios of UAM developmental stages outlined in the K-UAM ConOps and FAA ConOps are scrutinized, and the diverse messages that must be communicated among various stakeholders for effective UAM operations are identified. A draft of communication performance requirements is also calculated by considering packet sizes, transmission frequencies, acceptable latencies, and availability. The outcomes of this study are expected to stand as a pioneering effort in defining communication requirements for UAM services, providing a crucial foundation for future initiatives such as the design of dedicated communication networks for UAM and the determination of required frequency bandwidth.