• Title/Summary/Keyword: air support

Search Result 709, Processing Time 0.034 seconds

Management of the Nakdong-Jeongmaek based on the Characteristics of Cold Air - Focused on Busan, Ulsan, Pohang - (찬공기 특성을 고려한 낙동정맥 관리방안 연구 - 부산, 울산, 포항 인근을 대상으로 -)

  • Eum, Jeong-Hee;Son, Jeong-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.103-115
    • /
    • 2016
  • This study aims to analyze the properties of cold air production and its flow of Nakdong-Jeongmaek(mountain ranges), and to suggest management strategies for Nakdong-Jeongmaek in order to enhance the green air conditioning functions of Jeongmaek. For this purpose, three study sites including Gudeoksan Mountain and the vicinity in Busan, Goheonsan Mountain and the vicinity in Ulsan, and Unjusan Mountain and the vicinity in Pohang were selected. The results found that cold air flow and its height of the three study sites were analyzed based on topographic properties and land use. Management strategies for preserving and enhancing their temperature reduction functions were suggested. The cold air produced in the vicinity of Gudeoksan was not fully developed and spread because of the high-density development at the border of Jeongmaek. Since high pressures of development are expected at the border, high conservation policies are required. In the vicinity of Goheonsan, where the agricultural complex and industrial park are located, cold air flows well throughout the entire study site thanks to fully developed cold air in the wide, flat valley. Hence, plans to maintain the current cold air flow are required, and conservation plans to mitigate future developments are also needed in the flat valley. The cold air in Unjusan and the vicinity with its complex and narrow mountain valleys gradually develops into valley bottoms. In order to take advantage of the terrain, the valley near the cold air production areas are preserved. In particular, special plans are required to prevent damage to the cold air layer near Youngcheonho Lake, where the highest height of cold air was recorded due to the closed and lower terrain feature. This study could support the establishment of systematic management plans of Nakdong-Jeongmaek to preserve and enhance its green air conditioning functions.

Additional Improvement and Evaluation of Exhaust Ventilation Systems at Small and Medium Sized Enterprise (중.소규모 사업장의 국소배기장치 설치 실태와 문제점 및 개선방안)

  • Lim, Seong-Keun;Park, Doo-Yong;Kim, Won-Ki;Kim, Soo-Geun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Objectives : The purposes of this study were to evaluate exhaust ventilation systems(EVSs) and to suggest problems and improvements. Methods : For 50 small and medium-sized enterprises, we carried out evaluation of EVSs. We evaluated hoods with smoke tester and measurement of capture velocity. In addition, we used several indicators for performance evaluation designed in this study. Results : 1. Based on the smoke flow pattern and the criteria of occupational health and safety act, 67.8% of hoods were rated 'good' level at smoke test whereas 26.3% were rated 'good' level at measurement of capture velocity. 2. 29.3% of hoods, of which ratio of measured actual air flow at hood(Qah) to required ideal exhaust air flow at hood(Qih) was 1 or more, were rated 'good' level. 3. The % of EVS, of which ratio of measured actual air flow at stack(Qast) to total required ideal exhaust air flow at hood(Qith) was 1 or more, was 29.0%. 4. For the ratio of measured Qast to existing air flow at fan(Qfan), only 5% of EVSs were 1 or more and 26.0% were 0.8 or more but less than 1.0. 5. For the ratio of measured Qast to total measured actual exhaust air flow at hood(Qath), 74.0% were 0.8 or more but less than 1.0. 6. The percentage of EVS, of which ratio of total measured Qath to existing Qfan was 0.8 or more, was 19.0%. 7. The percentage of EVS, of which ratio of total measured Qath to total required ideal exhaust Qith was 1 or more, was 26.0%. 8. For the comprehensive evaluation indicators designed in this study, 29.0% were 0.8 or more. Conclusions : We found that few exhaust local ventilations at small and medium-sized enterprises were rated 'good' level and that most exhaust local ventilations had 'poor' design and installation. Therefore, relevant professional manpower and enterprises have to construct exhaust local ventilation where it is needed, and technical guidance and economic support are needed to improve 'poor' exhaust local ventilation after self-evaluation.

Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone (기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로)

  • Lee, Jae-Bum;Lee, Hyun-Ju;Moon, Kyung-Jung;Hong, Sung-Chul;Kim, Deok-Rae;Song, Chang-Keun;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

A Study on the Influence of Family Affection Interaction Behavior on Experience Value in Family Tourism (가족여행에서 가족 간의 상호작용 행동이 체험 가치에 미치는 영향에 관한연구)

  • Wang, Yue;Sim, Jae-yeon;Kim, Hyung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.101-108
    • /
    • 2019
  • Family tourism has become the mainstream demand of the tourism market, and it is also an effective way to obtain happiness. This paper takes family tourists as the research object, takes the family tourism family affection interaction behavior and the experience value relationship as the link, Empirically tests the family tourism "interaction behavior-social support-experience value" conceptual model and the relationship hypothesis. The results showed that interaction of family affection had a positive and significant effect on the functional, cognitive and emotional experience value of family tourists. Family interaction in family tourism has a significant positive impact on social support. Social support has significant positive effects on functional, cognitive, emotional and overall experiential values. This conclusion expands the theoretical and empirical research on the relationship between interaction behavior and experience value, and provides a basis for understanding the interaction behavior and experience value of family love from the perspective of tourism experience essence.

Context Information Model using Ontologies and Rules Based on Spatial Object (공간객체 기반의 온톨로지와 규칙을 이용한 상황정보 모델)

  • Park, Mi;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.789-796
    • /
    • 2006
  • Context-aware is the core in ubiquitous environment of sensor network to support intelligent and contextual adaptation service. The new context information model is demanded to support context-aware applications. The model should not depend on a specified application and be shareable between applications in the same environment. Also, it should support various context representation and complex context-aware. In this paper, we define the context information according to context-aware process. Also we design the knowledge of domain as well as applications using ontologies and rules. The domain spatial ontology and application knowledge are represented using the spatial object model and the rules of expanded ontologies, respectively. The expression of abundant spatial ontology represents the context information about distance between objects and adjacent object as well as the location of the object. The proposed context information model which is able to exhibit various spatial context and recognizes complex spatial context through the existing GIS. This model shows that it can adapt to a large scale outdoor context-aware applications such as air pollution and prevention of disasters as well as various context-aware applications.

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

Modified high-flow nasal cannula for children with respiratory distress

  • Itdhiamornkulchai, Sarocha;Preutthipan, Aroonwan;Vaewpanich, Jarin;Anantasit, Nattachai
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Background: High-flow nasal cannula (HFNC) is a noninvasive respiratory support that provides the optimum flow of an air-oxygen mixture. Several studies demonstrated its usefulness and good safety profile for treating pediatric respiratory distress patients. However, the cost of the commercial HFNC is high; therefore, the modified high-flow nasal cannula was developed. Purpose: This study aimed to compare the effectiveness, safety, and nurses' satisfaction of the modified system versus the standard commercial HFNC. Methods: This prospective comparative study was performed in a tertiary care hospital. We recruited children aged 1 month to 5 years who developed acute respiratory distress and were admitted to the pediatric intensive care unit. Patients were assigned to 2 groups (modified vs. commercial). The effectiveness and safety assessments included vital signs, respiratory scores, intubation rate, adverse events, and nurses' satisfaction. Results: A total of 74 patients were treated with HFNC. Thirtynine patients were assigned to the modified group, while the remaining 35 patients were in the commercial group. Intubation rate and adverse events did not differ significantly between the 2 groups. However, the commercial group had higher nurses' satisfaction scores than the modified group. Conclusion: Our findings suggest that our low-cost modified HFNC could be a useful respiratory support option for younger children with acute respiratory distress, especially in hospital settings with financial constraints.

A Study on the Characteristic of Emission for Air Pollutant by Small Two-stroke Engines (2행정 소형엔진의 대기오염물질 배출특성에 관한 연구)

  • Kim, Pil-Su;Choi, Sang-Jin;Park, Geon-Jin;Han, Yong-Hee;Kim, Dai-Gon;Yeo, So-Young;Kim, Jeong;Goh, Ji-Won;Jang, Young-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.6
    • /
    • pp.613-623
    • /
    • 2016
  • In this study, pilot experiments were conducted by setting operation conditions to analyze characteristics of emission for air pollutant from small two-stroke engines. Emission factors of the measured concentration of pollutant were compared with EEA. Emission factor of CO analyzed by experiments - concentration, flow rate, fuel consumption, etc.- was estimated at 816,011 g-CO/ton-fuel in average. It was confirmed that more than 80% of the fuel consumption is discharged to the Carbon Monoxide, and that as the engine load becomes higher, emission factor of CO increases in the form of log function. The average emission factor of $NO_x$ and $PM_{10}$ was $3,801g-NO_x/ton-fuel$ and $3,730g-PM_{10}/ton-fue$l each. The deviation was not large by comparing the fuel-based emission factor of EEA and the result of this study. Since considerable pollutants are expected to be discharged from the small two-stroke engines, continuous research and support of the policy is required.

Radial Performances of Spiral-Grooved Spherical Air Bearings (나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정)

  • Park, Keun-Hyung;Choi, Jeong-Hwan;Choi, Woo-Chon;Kim, Kwon-Hee;Woo, Ki-Myung;Kim, Seung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF

A Single Cell Multimedia Fate Model for Endocrine Disrupting Chemicals

  • Park, Kyunghee;Junheon Youn;Daeil Kang;Lee, Choong;Lee, Dongsoo;Jaeryoung Oh;Sunghwan Jeon;Jingyun Na
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.149-149
    • /
    • 2003
  • To understand environmental paths of the transport and accumulation of endocrine disrupting chemicals (EDCs), a single cell multimedia fate model has been constructed and evaluated. The EDCs of concern were PAHs, Organochlorine Pesticides (OCPs), PCBs, Alkyl phenols, and phthalates. An evaluation model was designed for the multimedia distribution, including air, water, soil, sediment and vegetation. This model was verified using reported values and via monitoring data. Based on collected data, the distribution trends of EDCs with respect to environmental media were analyzed. Those results have applied to the model for the prediction of the spatial and temporal distribution of EDCs in Seoul. Especially, phenol compound, phthalates, PAHs, PCBs and organochlorine pesticides were estimated and the model was verified. This model was successfully conducted to environmental media, such as air (vapor and suspended particles), soils (forest soil, bare soil, and cement-concrete covered soil), water (dissolved and suspended solids), sediment, trees (deciduous and coniferous). The discrepancies between the model prediction and the measured data are approximately within or near a factor of 10 for the PAHs of three rings through that of six rings, implying that multimedia distribution of the PAHs could be predicted with a factor of 10. Concerning about the air equilibrium may be assumed, a fugacity at steady state is similar in all environmental media. Considering the uncertainties of this model, the use of equilibrium models may be sufficient for assessing chemical fates. In this study, a suggestion was made that modeling and estimation of chemicals in environmental multimedia be rigorously evaluated using the measured flux data. In addition, these data should be obtained, for example, from the precise and standardized inventory of the target chemicals. The model (EDC Seoul) will be refined in an on-going research effort and will be used to support decision-making concerning the management of EDCs.

  • PDF