• Title/Summary/Keyword: air supply

Search Result 1,522, Processing Time 0.029 seconds

Characteristics of Non-Thermal Plasma Process for Air Pollution Control (대기오염 물질 저감을 위한 저온 플라즈마 반응공정의 특성)

  • 송영훈;신동남;신완호;김관태;최연석;최영석;이원남;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2000
  • Basic characteristics of non-thermal plasma process to remove C2H4 and NO have been experimentally investigated with a packed-bed type reactor and an ac power supply. The performance of the non-thermal plasma generated by ac power supply was compared with that of a wire-plate type reactor equipped with a pulsed power supply. The result shows that the non-thermal plasma can be effectively generated with an AC power supply that can be easily fabricated with conventional techniques. In order to understand the basic reaction mechanisms of the non-thermal plasma process, parametric tests for different carrier gases(air and nitrogen) and for different reaction pathways have been performed. The test results show that O3 generated by non-thermal plasma plays an dominant role to oxidize C2H4 and NO over N and O radicals when these pollutant gases are carried by dry air under room temperature condition. Experimental observations, however, indicate that N and O radicals can significantly affect on the removal process of the pollutant gases under certain conditions.

  • PDF

Evaluation Method of Plastic Pipe for High-Strength Water Supply (고강도 수도용 PVC관의 성능평가 연구)

  • Park, Jong-II;Lee, Chang Suck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • High-strength plastic water supply pipe evaluation method was evaluated in this study. Up to date, high strength water supply pipes that we install are mostly ductile cast iron pipes. Sometimes, a few PVC pipes are installed. Metal pipes have rust problem on the surface, causing serious damage to metal pipes and reducing the expected life span of water piping system. Nowadays, depending on technology development, some companies have improved properties of general PVC pipe performance with remarkable properties that exceed KS and ASTM standard. Here, we suggest a new method of performance evaluation for high-strength water plastic pipes.

Efficiency Characteristics of Half-bridge Series Resonant Converter for the Contact-less Power Supply (Half-bridge 직렬공진 컨버터 적용 무접점 전원장치 효율특성)

  • Lee, Hyun-Kwan;Song, Hwan-Kook;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.884-891
    • /
    • 2007
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss and the high voltage gain characteristics for load variations in contact-less power supply (CPS). To consider these characteristics, in this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is presented, described and verified through theoretical analysis, computer simulation and experimental test of 2.5kW prototype.

Analysis on the Heat load Pattern According to Ratio of the Heat Consumers in District Heating (지역난방 열사용자 비율별 열부하 패턴변화 분석: 공동주택과 건물)

  • Lee, Hoon;Lee, Yoon-Pyo;Kim, Lae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • The district heating users can be generally classified into two groups such as apartments and buildings. In consideration that the time zone of the maximum heat load for apartments is different from those of buildings during a day, the maximum heat supply range is presented. In case of the investigated area, the maximum heat supply is occurred at the ratio between apartments and buildings that is 65%:35%. Thus the heat supply range is increased as much as 15% if the time zone when the maximum heat load is occurred is considered.

Characteristics and control of intermittent flow in water distribution systems due to restricted supply (상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어)

  • Yang, Kangseung;Kim, Donghong;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.

A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel (난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구)

  • Choi, Jeong-Min;Lee, Kyu-Nam;Ryu, Seong-Ryong;Kim, Yong-Yee;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

Performance of Underground Air-to-Water Heat Pump with Direct Contact Heat Exchanger (지하공기-물 직접접촉식 열교환기를 구비한 히트펌프의 성능)

  • Kim, Y.H.;Kang, Y.K.;Sung, M.S.;Ryou, Y.S.;Kim, J.G.;Jang, J.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.1-172.1
    • /
    • 2010
  • In Jeju, underground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But greenhouse heating method by direct supply of underground air has several problems as like low temperature below $20^{\circ}C$ or high relative humidity over 90%. The underground air is inadequate in heating of crops such as mangos, oranges with the growing temperature over $20^{\circ}C$. Also if the relative humidity of greenhouse is kept with over 90%, diseases can strike almost of the crops. And also the ventilation loss becomes larger because the air pressure of inside greenhouse by direct supply of underground air is higher. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analyzed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air in this heat pump system were 46.5~31.4 kW, 34.9~20.9 kW respectively.

  • PDF

A Study on the Development of a Multi-Heat Supply Control Algorithm in a District Heating Apartment Building in Accordance with the Variation of Outdoor Air Temperature (외기온도 변화에 따른 지역난방 공동주택 다중 열공급제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, Jae-Ki;Yun, Sung-Ho;Nam, Ki-Hoon;Choi, Young-Don;Sin, Jong-Geun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, we developed a heat supply control algorithm that minimizes the heat loss in the heat distribution pipelines used for supplying heat energy to shared group housing. Controlling the temperature and flow rate of the hot water supplied to the heat exchanger for shared group housing enables us to develop a heat supply control technique that meets the heating load required by each household in a shared apartment building in accordance with changes in the outdoor air temperature, and that minimizes the heat loss occurring in the heat distribution pipeline. A one-year study in 2008 on a 1,473-household D-apartment building in Hwaseong, Gyeonggi-do, South Korea, compared the heat capacity used by each household, as well as the heat capacity supplied to the heat exchanger room of the apartment housing building, to calculate the amount of heat loss in the heat distribution pipeline. The results confirmed that 24.1% of the heat supplied was lost in the piping.

Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling (액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화)

  • PARK, SUNGHO;AHN, JUNKEON;RYU, JUYEOL;KO, AREUM
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

Evaluation of Ventilation Performances for Various Combinations of Inlets and Outlets in a Residential Unit through CO2 Tracer-Gas Concentration Decay Method (CO2 추적가스 농도감소법을 이용한 공동주택의 급·배기구 조합에 따른 환기 성능 분석)

  • Sang Yoon Lee;Soo Man Lee;Jong Yeob Kim;Gil Tae Kim;Byung Chang Kwag
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.111-120
    • /
    • 2023
  • Indoor air quality has become increasingly important with the increase in time spent in residential environments, impact of external fine dust, yellow dust, and the post-COVID 19 pandemic. Residential mechanical ventilation plays a key role in addressing indoor air quality. The legal standard for residential air changes per hour in Korea is 0.5 ACH. However, there are no standards for the location of supply and return vents. This study atempts to analyze the impact of ventilation performance based on the location of supply and return vents. An experiment was conducted using the CO2 tracer gas concentration decay method in a mock-up house set inside a large chamber to minimize external influences. The experimental results indicated that the commonly used combination of 2 supply and 2 return vents in living room spaces had a lower mean age of air than the combination of 1 supply and 2 return vents. Using multiple supply and return vents had lower mean age of air than using just 1 supply and 1 return vent.