• Title/Summary/Keyword: air source heat

Search Result 606, Processing Time 0.024 seconds

Effect of the Heat Exchange between Low and High Temperature Refrigerant on the Heat Pump Performance (저온측과 고온측 냉매간 열교환이 열펌프의 성능특성에 미치는 영향)

  • 이건중;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.343-350
    • /
    • 1999
  • The ambient air is commonly used as low-temperature heat source for heat pump operation. However, the coefficient of performance(COP) of the air to water heat pump is decreased with the ambient air temperature drop. In this study to solve this problem, the AVACTHE(Automatic Variable Area Capillary Type Heat Exchanger) with 3 levels of heat exchange area(0, 1,495.4, 1,794.5$\textrm{cm}^2$)was installed in the refrigerant circuit of the heat pump. The AVACTHE effect on the performance of heat pump was tested with the ambient air temperature variation. The COP improvement of the heat pump could be achieved by the AVACTHE installation when below -5$^{\circ}C$ of the ambient air temperature.

  • PDF

Free Convective Heat Transfer in a Vertical Channel with Heat Source at the Wall (벽에서 열원이 있는 수직채널안의 자연대류열전달)

  • Pak, Hi-Yong;Doo, Min-Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.108-117
    • /
    • 1985
  • In this study, a numerical analysis was performed for the natural convection heat transfer in a vertical channel which was consisted of two finite-thickness vertical walls with heat source. The ratio of the thermal conductivity of wall to air played an important role in the analysis. The case for which one side wall has protrusion resistances was also examined. The governing equations for the system was discretized by control volume formulation and solved by SIMPLE method. As the result of this study, it was found that the uniform heat flux boundary condition could be applied when the conductivity ratio was below approximately 50 and the uniform temperature boundary condition could be used when the conductivity rat io was over approximately 15,000. However, when the conductivity ratio was between 50 and 15,000, the thermal conductivity ratio value should be considered for the analysis. It was also found that the existence of protrusion resistance influenced the thermal field up to the distance of 3-4 times of the protrusion length.

  • PDF

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

An Experimental Study on the Part-Load Performance of a River Water Source 2-Stage Heat Pump (하천수 열원 2단 압축 열펌프시스템의 부분부하 운전특성에 관한 실험적 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1964-1968
    • /
    • 2007
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. Although its better performance, the large temperature difference between load and source makes system performance worse by nature. In this study, 2-stage compression is considered as the solution of this problem. Generally, heat pump is designed for maximum capacity rate, but it actually operates at part load condition in many cases. Therefore, an information on the part-load character is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes. The experimental results show that the system performance is influenced by the part load rates, river water temperature, load temperature, etc.

  • PDF

Study of Air Flow Effects on Heat Characteristics of Warm Needle Acupuncture (온침 열특성의 기류 영향에 관한 연구)

  • Kim, Jung-Wo Roy;Lee, Hye-Jung;Yi, Seung-Ho
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.35-47
    • /
    • 2010
  • Objectives : To characterize the thermal properties of traditional warm needle and new warm needle with various air flows as an important environmental factor and to suggest the necessity of maintaining suitable environment of clinics to maximize their efficacy. Methods : We measured the temperature characteristics of traditional moxa warm needle and new moxa charcoal warm needle by applying an automatic temperature acquisition system with thermocouples while external various air flows were supplied. Temperatures of two positions at the needle body were measured while a moxa cone burned. Typical temperature characteristics like peak temperature, duration, curve shape and the efficiency of the heat stimuli by heat amount analysis were executed. Results : Both warm needles showed similar temperature curve with an increase in the air flow. Peak temperature and duration of effective heat decreased with the air flow, as shown in indirect moxibustion on garlic. The temperature change pattern by the air flow became more apparent when the total combustion heat was compared with the effective heat. The values from two positions on the needle body were significantly different, showing a distance dependency from the heat source of warm needle acupuncture. Conclusions : Thermal properties of warm needle acupuncture was observed variously with surrounding air flow of 0.0 - 0.7 m/s. It emphasized the importance of environmental control as well as the warm needle itself such as heat source and needle. The latter has already been known to deliver designated heat to subjects. It also indicated the importance of education and skill of the practitioners of warm needle acupuncture.

Numerical simulation of turbulent air-flow in a closed engine room with heat source in a ship (열원이 있는 밀폐된 선박 기관실에서의 난류기류에 관한 수치적 연구)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • Ventilation of the marine engine room is very important for the health of the workers as well as the nomal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-.epsilon. model was carried out. In the present study, the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with downword angle depresses recirculation flow, causing a strong steam in the wider space of the room. Ventilation and removal of the released heat are promoted with this pattern. There is a possibility of local extreme heating at the upper surface of engine when supply and exhaust ports of air are in bilateral symmetry. The effect of the increase of exhaust port area on ventilation decreases as the number of supply port increases.

  • PDF

A Study on Hybrid Heating System with Anti-Superheating Devices (과열방지장치가 설치된 복합열원 난방시스템에 관한 연구)

  • Park, Youn-Cheol;Ko, Gwang-Soo;Han, Yu-Ry
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • The previous study was conducted to develop an air source multi heat pump system that could be operated with the solar collector and air source heat exchangers as heat source of the system. There is a winter-sowing problems in air source multi heat pump system when the outdoor temperature goes down under freezing point. The winter-sowing problem was solved by adapting R-22 refrigerant as working fluid in the previous study. However, when the system operated at high temperature, another problems are come out such as overheating of the solar collector outlet which lead to the superheat of the compressor inlet of the heat pump system. The condition could deteriorates a compressor in some case. In this study, we installed the anti-superheating devices on the previously developed system. As results of system performance test, COP of the system with anti-superheating technique is 2.4. It is a little improved COP compare to previous study's 2.23. In the results of multi heat source heating system, during operating solar collector, COP is relatively high between $200\;W/m^2$ and $400\;W/m^2$ solar intensity. It is recommended to extend the study on performance optimization with balancing the solar collect and capacity of compressor at higher solar irradiation conditions.

Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer (돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.