• 제목/요약/키워드: air mixing system

검색결과 297건 처리시간 0.027초

증기분사냉동계의 부우스터 이젝터와 에어 이젝터의 설계조건비교에 관한 연구 (A Study on the Comparison of Design Conditions between Booster Ejector and Air Ejector in the Steam-Jet Water-Vapour Refrigeration Cycle)

  • 이창식
    • 대한설비공학회지:설비저널
    • /
    • 제7권2호
    • /
    • pp.73-79
    • /
    • 1978
  • This paper presents the experimental study on the design conditions of pressure between booster ejector and air ejector in the steam-jet water-vapour refrigeration system. In this experiment, the motive steam of booster ejector and ai. ejector was dry saturated from 6 ata to 8 ata and flash chamber pressure were about $10\∼540mmHg$ higher than mixing section in booster ejector. The investigation of air on the pressure of booster ejector was performed by changing the condenser pressure. The experimental results show that flash chamber vacuum and condenser pressure of steam-jet refrigeration cycle increased in accordance with the increase of motive steam Pressure. Among the several nozzle sires tested, No.4 nozzle were best in term of evaporator vacuum under the constant operating conditions of air ejector in condenser.

  • PDF

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

고점성 유체 내부에서의 다상유동장 가시화 및 PIV 측정 (Flow Visualization and PIV Measurement of Multiphase Flow in Highty Viscous Liquid)

  • 김현동;류승규;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.48-54
    • /
    • 2006
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filled with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}$ s at $25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k\times2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream, and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20mm from the bottom of the mixer.

  • PDF

연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구 (Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio)

  • 황유현;정동호;김선민;김대중
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.835-841
    • /
    • 2010
  • MEMS 가스터빈 엔진에서 연료와 공기의 혼합에 영향을 미치는 중요한 요소중 하나는 연료 분사구 형상의 설계이다. 본 연구에서는 3 개의 연료 주입부와 각 주입부에 연결된 여러 개의 분사구에 의해 연료와 공기가 혼합되는 시스템을 고려하여 분사구의 배열과 연료 공급비율의 변화에 따른 혼합 정도를 당량비를 통하여 정량적으로 해석하였다.

GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구 (A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine)

  • 김경배;송미지;김구성;강석호;이영훈;이성욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 - (Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure -)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제18권1호
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구 (A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement)

  • 박만재
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.

적운 발달에 관한 수치 시뮬레이션 (A Numerical Simulation on the Development of Cloud)

  • 이화운;김유근;전병일
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.15-23
    • /
    • 1992
  • Development of cumulus is studied by numerically integrating the equation of motion equations of conservation for water vapor mixing ratio, and the thermodynamic energy equuation. We use the terrain-following coordinate system called z'-coordinate system, in which we can easily treat any calculation domain with terrain configuration such as mountains. The model domain of calculation is restricted vertically to 4.Skin and horizontally to 100 km, has a bell-type mountain in the centeral part. Four cases are considered, one in a neutral environment, second in a slightly stable environment, third in a environment decreasing water content with low value of initial water vapor mixing ratio, the fourth in a case with higher vapor gradient. The more the atmosphere is unstable, the more cumulus develops easily and the more water vapors is abundant, the more cumulus develops easily too. More detailed cloud microphysics parameterizations and wet deposition must be conridered to use in air pollutants prediction model.

  • PDF