• Title/Summary/Keyword: air mixing system

Search Result 297, Processing Time 0.031 seconds

A Study on the Ralstonia Solanacearum Inactivation using Improved Plasma Process (개선된 플라즈마 공정을 이용한 Ralstonia Solanacearum 불활성화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 2014
  • Effect of improvement of the dielectric barrier discharge (DBD) plasma system on the inactivation performance of bacteria were investigated. The improvement of plasma reactor was performed by combination with the basic plasma reactor and UV process or combination with the basic plasma reactor and circulation system which was equipped with gas-liquid mixer. Experimental results showed that tailing effect was appeared after the exponential decrease in basic plasma reactor. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of basic plasma process and UV process. The application of gas-liquid mixing device on the basic plasma reactor reduced inactivation time and led to complete sterilization. The effect existence of gas-liquid mixing device, voltage, air flow rate (1 ~ 5 L/min), water circulation rate (2.8 ~ 9.4 L/min) in gas-liquid mixing plasma, plasma voltage and UV power of gas-liquid mixing plasma+UV process were evaluated. The optimum air flow rate, water circulation rate, voltage of gas-liquid mixing system were 3 L/min, 3.5 L/min and 60 V, respectively. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of gas-liquid mixing plasma and UV process.

Evaluation of Thermal Environment through Large-scale Model Experiment on Air-barrier Type Perimeter-less System (실대실험에 의한 에어베리어형 페리미터레스 공조시스템의 실내 열환경 평가)

  • 김용경;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.970-978
    • /
    • 2003
  • This paper aims at suggesting design guidelines for a perimeter-less HVAC system that contributes energy savings. Perimeter-less HVAC system is one that relieves difficulties such as handling mixing loss, uneven radiative environment, and maintenance and repair. It prevents heat load gained through window and outdoor wall without modifying a previously equipped building skin system. In this paper, we conducted a large-scale model experiment to see how the push-pull air flow would handle indoor heat to obtain an optimized perimeter-less design, and then we plan to perform several kinds of CFD (computational fluid dynamics) cases through numerical simulation

Dual-plane Stereoscopic PIV Measurement on the Lobed Jet Mixing Flow

  • SAGA Tetsuo;KOBAYASHI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.108-122
    • /
    • 2001
  • In a continuing effect to study the mixmg enhancement by large-scale streamwise vortices in lobed mixing flows, an advanced PIV system named as dual-plane stereoscopic PIV system was used in the present study to conduct simultaneous vorticity (all three components) measurement of an air jet exhausted from a lobed nozzle. Unlike 'classical' 2-D PIV system or conventional 'single-plane' stereoscopic PIV system, the dual-plane stereoscopic PIV system used in the present study can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously. Therefore, it can provide the distributions of all the three components of vorticity vectors instantaneously and simultaneously. The evolution and interaction characteristics of the large-scale streamwise vortices and azimuthal Kelvin-Helmholtz vortices in the lobed jet mixing flow were revealed instantaneously and quantitatively from the measurement results of the dual-plane stereoscopic PIV system. The characteristics of the mixing process in the lobed jet mixing flow were analyzed based on the simultaneous measurement results of the steamwise vorticity and azimuthal Kelvin-Helmholtz vorticity distributions.

  • PDF

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

An Experimental Study for the Improvement of Ventilation Conditions and Effectiveness in the Manufacturing Industry by Increasing the Mixing Factor (K-Factor) (혼합계수(K-Factor) 증가에 따른 사업장의 환기 조건 및 효율 개선에 관한 연구)

  • Lee, Yun-ho;Lee, Seokwon;Lee, Kyoungho;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.343-350
    • /
    • 2019
  • Objectives: This study aims to identify whether ventilation conditions and their effectiveness can be significantly improved in an experimental chamber by increasing the mixing factor (K-Factor). Methods: In a chamber with a volume of $1m^3$, air velocity was measured at six different points with four roof fans in the upper part of the chamber being operated in order. The impact of the ventilation conditions was analyzed when the flow rates were increasing and the first inlet of the chamber was either open or closed. Smoke patterns were also observed at four corner points where ventilation was limited. Kruskal Wallis and Mann-Whitney tests were performed to compare air velocities measured in the chamber. Results: The air velocities measured at only the third point increased significantly from $0.03{\pm}0.03m/s$ (door open) and $0.05{\pm}0.06m/s$ (door closed) with two fans, $0.08{\pm}0.08m/s$ with three fans, and $0.09{\pm}0.09m/s$ with four fans operating (p<0.05). However, air velocities at the four corner points did not significantly increase. Smoke patters also showed that the open inlet of the chamber had no effect on improvement of ventilation conditions and effectiveness. Conclusions: In this study, the air velocities at six points in the chamber did not significantly increase despite the increase in the mixing factor and flow rates of ventilation in the controlled environment. Therefore, the inflow of outdoor air throughout an open inlet and installation of a forced ventilation system can potentially increase the indoor air velocity and improve ventilation condition without an increase in the mixing factor.

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

An Experimental Study on the Performance of $CO_2$ Air-conditioning Cycle Equipped with an Ejector

  • Kim, Mo-Se;Lee, Jae-Seung;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.100-106
    • /
    • 2009
  • As an effort to prevent environmental problems caused by ozone depletion and global warming, alternative refrigerants are being developed, and one of the candidates is carbon dioxide. To overcome slightly low efficiency of $CO_2$ refrigeration system, air-conditioning cycle using an ejector was suggested. Ejector compensates throttling loss in an expansion device by reducing compression work. In this study, the ejector refrigeration cycle using $CO_2$ as a refrigerant is investigated to understand the effect of the mixing section diameter and refrigerant charge amount on the performance. If mixing section diameter is too large or too small, either cases show low performance. The optimum refrigerant charge amount which gives the best performance is found for standard operating conditions. The air-conditioning cycle was analyzed for several operating conditions.

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

Calibration Methods for the Gas Chromatographic Analysis of ppt-level Hydrogen Sulfide (H2) in Air (환경 대기 중 ppt 수준의 황화수소 분석을 위한 GC 방식의 검량 기법에 대한 연구)

  • 김기현;오상인;최여진;최규훈;주도원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.679-687
    • /
    • 2003
  • In this study, we investigated the analytical techniques to quantify the ambient concentration of hydrogen sulfide (H$_2$S) in air at ppt concentration level. For this purpose, an on-line GC analytical system equipped with both pulsed-flame photometric detector (PFPD) and thermal desorption unit (TDU) was investigated by collecting ambient air samples. The results of our study generally indicated that calibration conditions of GC system is highly sensitive to affect the accuracy of the analytical technique. Most importantly. we found that the use of different matrices in the the preparation stage of working standards was sensitive to control the overall performance of this technique. The calibration of our analytical system was tested by the two types of working standard (prepared by mixing either with high purity $N_2$ or with the ambient air). According to this test, the latter represented more efficiently the detecting conditions of actual air samples. The peak occurrence patterns of both air samples and standards (prepared by mixing with ambient air) were altered in a similar manner as the function of the loaded volume; however, it was not the case for the $N_2$-mixed standards. Results of our study suggest that detection of H$_2$S is highly different from other sulfides and that its quantification requires minimiaing interfering effects of non -pure substance (like water vapor) and (either sorptive or destructive) loss effects.