• Title/Summary/Keyword: air injection

Search Result 1,202, Processing Time 0.027 seconds

A Study on Stabilization of Landfill by Air Ventilation in Field (공기주입방식을 통한 쓰레기 안정화의 현장적용에 관한 연구)

  • Lee, Hwan;Lee, Chae-young;Jeon, Yeon-ho;Kim, Kyung;Kim, Doo-il;Lee, Cheol-hyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • Landfill and lysimeter experiments were conducted to estimate the optimum air injection method for the degradation of waste in landfill and the pre-stabilization. Continuous injection with low pressure and quantity can be effective for pre-stabilization of old landfill due to the lower contents of volatile solids in landfill. Air injection and landfill gas (LFG)extraction showed that the SVE (Soil Vapor Extraction) effect by air ventilation was more significant than the biodegradation of organics. Theses results suggested that they could accelerate the biological stabilization of organic waste in landfills. It is also expected that they would reduce the problems including gas emission during the landfill mining, separation and/or transportation to such levels that might be discharged directly to the atmosphere or with minimal treatment, if required.

  • PDF

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

A Comparative Study of Anti-inflammatory Activities of the Steroid Compounds Utilizing the 'Granuloma Pouth' Technic (육아종낭법(肉芽腫囊法)('Granuloma pouch' technic)을 이용(利用)한 Steroid 화합물(化合物)의 소염작용(消炎作用) 비교(比較))

  • Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.1 no.1 s.1
    • /
    • pp.47-52
    • /
    • 1965
  • There are several methods used for screening and evaluating anti -inflammatory agents. Among these, 'Granuloma pouch' technic introduced by Hans Selye is considered as a simple and reliable method. The procedure of 'Granuloma pouch' technic is as follows: Rats were used as experimental animals. An air pocket was produced in the subcutaneous tissue of the mid-dorsal portion between the shoulders by the injection of 25ml of the air which was immediately followed by injection of 1 ml of 1% croton oil as irritant. Inflammatory exudate accumulated in the pouch during the succeeding 14 days. After sacrificing the rats on the last day of the experiment, the amount of the exudate in the pouch and the weight of the granuloma tissue was measured. The author observed and compared the anti-inflammatory activities of the several steroid compounds when they are given by different methods. 1. In the control rats, the amount of inflammatory fluid and the weight of the granuloma tissue after 14 days were 9ml and 3gm respectively. 2. Injection of hydrocortisone 1.5mg subcutanenusly, 24 hours prior to pouch formation into the area where the pouch is to be formed, successfully prevented the inflammatory processes. 3. Injection of hydrocortisone 1.5mg in the air pocket formed 24 hours prior to croton oil injection was ineffective. 4. Injection of hydrocortisone into the pouch at a distance of 5mm apart from the pouch formation did not prevent the development of inflammation. 5. Anti-inflammatory activities of hydrocortisone administered systematically(injected intramuscularly into the area which is not related to the area of pouch formation) for 10 days were proportional to the doses of hydrocortisone administered. 6. DOCA, testosterone, and progesterone did not show the anti-inflammatory activity.

  • PDF

Experimental Validation on Performance of Waste-heat-recovery Boiler with Water Injection (물분사 폐열회수 보일러의 효용성에 대한 실험적 검증)

  • Jaehun Shin;Taejoon Park;Hyunseok Cho;Junsang Yoo;Seoksu Moon;Changeon Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The waste-heat-recovery boiler with water spray (HR-B/WS) applies the heat exchange between the inlet air and exhaust gas with the water spray into the inlet air. The evaporation of water in the inlet air promotes heat recovery from the exhaust gas so that thermal efficiency can be improved by the enhanced condensing effect. The NOx emission can also be reduced by lowering the flame temperature due to the dilution effect of the water. In this study, the validity of this concept is examined by the practical boiler test performed with a 24 kW condensing boiler under the full load condition according to the water injection amount. The theoretical amount of water injection is calculated under the assumption of full evaporation of the sprayed water, which is calculated as 50 g/min. Since the injected water cannot evaporate fully in the actual system, the maximum water spray amount is set as 100 g/min. The results showed that the water injection can increase the thermal efficiency up to 95.59% and reduce NOx and CO emissions simultaneously to 8.9 ppm and 35 ppm at 0% of O2. Although the heat energy loss increased due to the unevaporated water, the increase in water injection amount caused higher thermal efficiency due to the increased amount of the evaporated water.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(3) : Exhaust Emission (정적연소기에서의 메탄-공기 혼합기의 연소특성(3) : 배기배출물)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the exhaust emission characteristics of homogeneous charge, stratified pattern and inhomogeneous charge under various conditions using gas chromatography. In the case of homogeneous charge condition, the $CO_2$ concentration is proportional to excess air ratio and overall charge pressure, the $CO_2$ concentration is proportional to excess air ratio and the UHC concentration is inversely proportional to ignition time and overall charge pressure. In the case of stratified pattern, the RI(rich injection) condition shows better exhaust emission characteristics, especially $CO_2$, than that of HI (homogeneous injection) or LI (lean injection) conditions. In inhomogeneous charge conditions, when initial charge pressure is increased, $CO_2$ and UHC concentration is reduced but $O_2$ concentration is increased. And when the excess air ratio of initial charge mixture is 3.0, UHC and $CO_2$concentration show lowest values.

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).

REMEDIATION OF GROUNDWATER CONTAMINATED WITH BENZENE (LNAPL) USING IN-SITU AIR SPARGING

  • Reddy, Krishna R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.11-24
    • /
    • 2003
  • This paper presents the results of laboratory investigation performed to study the role of different air sparging system parameters on the removal of benzene from saturated soils and groundwater. A series of one-dimensional experiments was conducted with predetermined contaminant concentrations and predetermined injected airflow rates and pressures to investigate the effect of soil type and the use of pulsed air injection on air sparging removal efficiency. On the basis of these studies, two-dimensional air sparging remediation systems were investigated to determine the effect of soil heterogeneity on the removal of benzene from three different homogeneous and heterogeneous soil profiles. This study demonstrated that the grain size of the soils affects the air sparging removal efficiency. Additionally, it was observed that pulsed air injection did not offer any appreciable enhancement to contaminant removal for the coarse sand; however, substantial reduction in system operating time was observed for fine sand. The 2-D experiments showed that air injected in coarse sand profiles traveled in channels within a parabolic zone. In well-graded sand the zone of influence was found to be wider due to high permeability and increased tortuosity of this soil type. The influence zone of heterogeneous soil (well-graded sand between coarse sand) showed the hybrid airflow patterns of the individual soil test. Overall, the mechanism of contaminant removal using air sparging from different soil conditions have been determined and discussed.

  • PDF

Experimental study on analysis of correlation between void fraction and drag reduction rate in air lubrication ship (공기윤활선 모사 실험에서의 공극률 및 마찰저항저감율 상관성 분석을 위한 실험적 연구)

  • Park, Seungchan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • The reduction of CO2 emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Since the air lubrication pattern varies according to the ship's standing position and injection flow rate, in order to effectively control the air lubrication system, it is necessary to be able to judge the air layer development state based on the information collected from the monitoring sensor. In this study, we performed the air lubrication ship simulation experiment to measure the void fraction and the frictional resistance. The void fraction was measured to confirm the behavior of the air. Through the measurement of the frictional resistance, the change in frictional resistance reduction rate from the injection point to the longitudinal direction of the ship was confirmed. Based on the measurement results, correlation analysis was performed on void fraction and frictional resistance reduction rate.

A Experimental Study on Combustion-Stability Rating in a Subscale Chamber (모형 연소실에서 분사기 연소 안정성 평가에 관한 실험적 연구)

  • Kim, Chuljin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.77-78
    • /
    • 2012
  • To predict combustion instability in actual full-scale combustion chamber of rocket engines, air-injection test is proposed with scaling techniques. From the data, damping factors have been obtained as a function of hydraulic parameter and the data give us instability map. Two instability regions are presented and it is found that they coincide reasonably with them from hot-fire test with full-scale flow rates. Accordingly, the proposed approach can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

  • PDF

CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position (2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.