• Title/Summary/Keyword: air flow field

Search Result 801, Processing Time 0.029 seconds

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System (건식 이중바닥구조의 중량충격음 저감성능 평가)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF

The Development of LPP Combustor for ESPR

  • Kinoshita, Yasuhiro;Oda, Takeo;Kobayashi, Masayoshi;Ninomiya, Hiroyuki;Kimura, Hideo;Hayashi, Shigeru;Yamada, Hideship;Shimodaira, Kazuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.453-459
    • /
    • 2004
  • An axially staged combustor equipped with an LPP combustion system and CMC liner walls has been investigated for stable combustion and low NOx emissions for the ESPR project. Several fuel injectors were designed and manufactured for the LPP burner, and single sector combustor tests were conducted to evaluate fundamental combustion characteristics such as emissions, instabilities, auto-ignition, and flash back at typical operating conditions from idle to Mn 2.2 cruise. The latest test results showed that the LPP burner had a good potential for the low NOx target. It was also found that the NOx emission level was greatly affected by a distortion in the air flow velocity field upstream of the LPP burner due to the diffuser and fuel feed arm. The CMC material was investigated to apply for the high temperature and low NOx combustor. Annular combustor liner walls were manufactured with the CMC material, and they have been tested at low pressure conditions to evaluate the soundness of the material and the mounting and seal system. This paper reports the latest research activities on the LPP combustion system and CMC liner walls for the ESPR project.

  • PDF

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

Experimental Research on Effects of Water Sprayed Curtain On Anti-diffusion of Fire Gases in Case of Tunnel Fire (터널 화재시 물분무노즐에 의해 형성되는 제연수막의 연기층 확산방지성능에 관한 실험적 연구)

  • Park, Hyung-Joo;Choi, Young-Sang;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2004
  • In case of a fire in road or railway tunnel it is always necessary to keep the escape condition as good as possible. Most of the victims of major fires in tunnels are because they couldn't leave the tunnel in time and were trapped by smoke, or rescue teams couldn't reach the place of the accident due to low visibility and high temperature. In spring 2003 a comprehensive field experiment was undertaken in a large scaled tunnel in Youngin City to test the effectiveness of a new water spray curtain system, designed to the air qualify inside of a tunnel in case of fire during passenger's escape to safe routes, In order to control the smoke propagation, fixed water sprayed nozzles were used to make water curtain system, which can be installed or hanging water piping line below ceiling. The experiment was accompanied by an extensive measurement campaign in order to measure temperature dropping effect and flow conditions as well as CO concentration for various water sprayed curtains produced by sprinkler heads or water spray nozzle. Eventually comparison analysis were undertaken to investigate the performance of water curtains under fixed water pressure. Therefore most effective water curtain system was presented on the basis of water droplet size in long tunnel.

The Classification of Spatial Patterns Considering Formation Parameters of Urban Climate - The case of Changwon city, South Korea - (도시기후 형성 요소를 고려한 공간유형 분류 -창원시를 대상으로 -)

  • Song, Bonggeun;Park, Kyunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.299-311
    • /
    • 2011
  • The objective of this paper is to present a methodology for the classification of spatial patterns considering the parameters of urban form which play a significant role in the formation of the urban climate. The urban morphological parameters, i.e. building coverage, impervious pavement, vegetation, water, farmland and landuse types were used to classify the spatial patterns by a K-means cluster analysis. And the presented methodology was applied on Changwon city, South Korea. According to the results of cluster analysis, the total spatial patterns were classified as 24 patterns. First of all, The spatial patterns(A-1, A-2, A-3, B-1, B-2, B-3, C-1, C-2, C-3, D-1, D-2, D-3, E-1, E-2, E-3, F-1, F-2, F-3, G-1, G-2, G-3), which distributed in the rural area and the suburban area, can have the positive impacts of cold air generation and wind corridor on an urban climate environment, were distributed in the rural area. On the other hand, the spatial patterns of the downtown area including A-4, B-4, C-4 and D-4 are expected to have the negative impacts on urban climate owing to the of artificial heat emission or the wind flow obstruction. Finally, it will require the future research to analysis the climatic properties according to the same spatial patterns by the field survey.

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

A Study on the Natural Convection from the Isothermal Square Beam Attached to an Adiabatic Plate (단열판에 부착된 등온 사각비임에서의 자연대류 열전달에 관한 연구)

  • Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Steady laminar natural convection heat transfer from the isothermal square beam attached to an adiabatic plate has been studied for various inclination angles of the adiabatic plate and Rayleigh number by using Mach-Zehnder interferometer in air. As the inclination angles change, the different temperature and fluid flow field were obtained by the ascending heated fluid and the adiabatic plate. In this study, the inclination angles were $0^{\circ}$(positive & negative), $45^{\circ}$(positive & negative), and $90^{\circ}$. The maximum total mean Nusselt number value was found at a positive inclination angle ${\theta}=45^{\circ}$.

  • PDF

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.