• 제목/요약/키워드: air flow field

검색결과 801건 처리시간 0.034초

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구 (A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream)

  • 김원태;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

해양 시추선용 공조덕트 개발에 대한 수치해석 (Numerical Analysis of the Development of an Air Conditioning Duct for Marine and Oil Drilling Ships)

  • 이중섭;진도훈
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.50-55
    • /
    • 2017
  • This study is about the distributions of flow in an air conditioning duct used for marine and oil drilling ships. Three-dimensional steady state turbulence was assumed as a governing equation for describing the flow in the air conditioning duct in this study. We compared the flow field with the pressure distribution according to the inlet velocity for two types of air conditioning duct, and stress and safe factors were simulated using ANSYS W/B. The result of fluid analysis showed an increased pressure drop in the duct according to the inlet velocity. Furthermore, secondary flow and complicated flow characteristics occurred at the bellows zone.

영상처리 기법을 이용한 원통형 용기내의 회전유속의 측정 (Image Processing Technique for Rotational Velocity Measurements in a Circular Cylinder)

  • 김재원;엄정섭;임태규
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 1995
  • An experimental investigation has been made for flow in a circular cylinder with a rotating bottom disk. Flow system considered in this paper is a characteristic model of interior flows of an electric washing machine. Flows in a tub of an electric washing machine are driven by a rotating bottom disk called a pulsator. The simple and characteristic model was composed of a circular cylinder with impulsively rotating endwall disk and a viscous fluid in it. Rotational motion of the pulsator is periodic and alternative in rotation direction. The flow field in the interior region is governed by a horizontal boundary layer forms on the impulsively rotating disk. Experimental approach was accomplished by adopting an image processing technique for velocity measurements. Comprehensive details of the flow structure are presented. Also a meridional circulation is obtained by tracking image particles suspended in the fluid. Flow structure and data are successfully procured for this complex rotating flow field.

  • PDF

항공기 포드 냉각용 공기흡입관 내부 유동해석 (THE INTERNAL FLOW ANALYSIS OF AIR INTAKE FOR THE COOLING OF AIRCRAFT POD)

  • 김선태;정용인;조승호;문우용;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.81-85
    • /
    • 2009
  • In this paper, the aerodynamic shape of air intake was investigated for the efficient cooling of electronic equipments in aircraft pod. As a first step, ESDU method was applied for the basic shape design of air intake considering the operational environments. The second step was to confirm the performance on design point, so the internal flow field of air intake was analyzed using a commercial Navier-Stokes code(FLUENT). And also the aerodynamic characteristics of internal flow at off-design condition was investigated with the variations of airflow rate. The results show that the air intake meets the requirement of target performance under the mission environments.

  • PDF

Analysis of Air Flow Rate through Subway Vent Shaft with Mechanical Ventilation System for Shape Change of Vent Shaft

  • Kim, Jung-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.45-51
    • /
    • 2009
  • Three-dimensional numerical analyses of mechanical ventilation system in vent shaft of subway in operation are carried out in relation with the different air flow passage of vent shaft and two ventilation operation modes of push/pull, The ventilation characteristics of vent shaft with regard to the shape change are evaluated. And the air flow rate through the vent shaft by ventilation system is measured within subway in operation to assess the accuracy and applicability of the numerical analysis method. The decrease of air flow rate due to vent-shaft change are between 0.7 to 2.2% in the cases examined.

발열시스템 열적 성능의 정밀측정에 관한 연구 (A Study on the Precise Measurement of the Performance in the Heating System)

  • 최창용;김홍건
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.60-67
    • /
    • 2002
  • A precise measurement of field test was performed to estimate the thermal performance of the forced convection electric air heater by experiment. Air temperature, flow rate and electrical power input were measured with the related measurement sensors, and acquisition methods for the measured data were studied to estimate the thermal performance of the tested air heater effectively. To determine the mean air temperature at the flow cross-section, measuring positions were chosen by considering the flow velocity profile and the equally divided cross-sectional area. From the experimental results, thermal efficiency was obtained accurately as an indication of the tested heating system performance.

Cathode에 따른 소형 PEM 연료전지의 성능 변화 (Performance of the Small PEMFC according to Cathode)

  • 이세원;이강인;박민수;주종남
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.