• Title/Summary/Keyword: air flow

Search Result 6,984, Processing Time 0.033 seconds

터빈 유량계를 사용한 이상유동의 측정

  • Sim, Jae-U
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.147-152
    • /
    • 1998
  • In this study turbine flowmeters were used to predict volumetric flow rate of each phase in two-phase, gas-liquid, flowing in a vertical tube. To determine volumetric flow rates of two-phase, air-water, flowing vertically upward through the polycarbonate tube(57mm ID-inside diameter), two turbine flow meters were used. For void fraction measurements, two gamma densitometers were used at each location of the turbine flow meter, one at the upstream and the other at the downstream. It was determined that the turbine flowmeter's outputs were a function of actual volumetric flow rate of each of the two phases. A two-phase flow model was developed.

  • PDF

Identification of Two-Phase Flow Patterns in a Inclined Duct Based upon a Statistical Analysis of Instantaneous Pressure Drop (순간압력강하치의 통계적 해석을 통한 경사관내 2상유동양식의 판별)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.590-597
    • /
    • 1988
  • Characteristics of flow regime transitions in inclined upwards gas-liquid two-phase flow have been investigated based upon a statistical analysis of instantaneous pressure drop curves through an orifice. The probability density functions of the curves indicate distinct patterns depending upon two-phase flow regime, which are very similar to those of horizontal two-phase. The dimensionless intensity of fluctuations of the pressure drops sharply change as the flow transitions such as plug-slug, pseudo slug-slug and annular-slug take place. The effects of inclination angle on the flow regime transitions have been also investigated. The results show that the method to identify the flow pattern based upon the statistical analysis of instantaneous pressure drops is suitable for inclined flow as well as horizontal flow.

  • PDF

Characteristics of Flow Regime Transitions in Horizontal Gas-Liquid Two-Phase Flow (수평 기액2상유동에서 유동양식의 천이특성)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.342-349
    • /
    • 1988
  • The characteristics of flow pattern transitions in a horizontal cocurrent gas-liquid flow have been investigated by means of a statistical analysis of instantaneous pressure drop curves at an orifice. The dimensionless intensity of pressure drop fluctuation shows a sudden change during the course of flow transitions, indicating that it may be a good measure to identify the flow regime transitions. The probability density function of the curves feature a unique pattern depending upon the flow regimes and the statistical properties of the PDF also have particular ranges for each flow regime. In conclusion, the statistical analysis of instantaneous pressure drops may be a powerful tool for predicting the flow regime transitions.

  • PDF

Conical Diffuser Design and Hydraulic Performance Characteristics in Bioreactor Using Empirical and Numerical Methods (원뿔형 산기관 설계와 생물반응조에서 수력학적 운전특성에 관한 실험 및 해석)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.633-643
    • /
    • 2015
  • In this study, we develop a highly efficient conical-air diffuser that generates fine bubble. By inserting a sufficient number of aerotropic microorganisms with dissolved oxygen from an air diffuser and minimizing the air-channel blockages within the air diffuser, we expect to improve the efficiency and durability of the decomposition process for organic waste. To upgrade the conventional air diffuser, we perform experiments and numerical analysis to develop a conical-type that generates fine bubble, and which is free from nozzle blockage. We complement the air-diffuser design by numerically analyzing the internal air-flow pattern within the diffuser. Then, by applying the diffuser to a mockup bioreactor, we experimentally and numerically study the bubble behavior observed in the diffuser and the 2-phase fluid flow in the bioreactor. The results obtained include statistics of the cord length and increased velocity, and we investigate the mechanisms of the fluid-flow characteristics including bubble clouds. Throughout the study, we systemize the design procedures for the design of efficient air diffusers, and we visualize the fluid-flow patterns caused by bubble generation within the mockup bioreactor. These results will provide a meaningful basis for further study as well as the detection of oxygen transfer and fluid-flow characteristics in real-scale bio-reactors using sets of air diffusers.

A Study on the ventilation Technology for Indoor Air Quality Improvement (실내 공기질 개선을 위한 환기기술에 관한 연구)

  • Chang Tae-Hyun;Cho Hyun-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.540-551
    • /
    • 2005
  • In this research, We'll focus on warm environment and ventilation characteristics when utilizing intake ports, exhaust port and 4-way cassettes for removing heat and polluted air. Four way cassettes have been typical air conditioning units for offices since the multi air-conditioner was introduced. The following installation cases will also be discussed: 1) 4-way cassette's operation without intake ports and exhaust port. 2) Effect of the position of intake port and exhaust ports. 3) cooling air flow, temperature. distribution and local supply index according to the air flow rate from 4-way cassettes.

A Controller Design of the Bilinear System for HVAC(Heating, Ventilating and Air-conditioning) System (냉난방 시스템의 이중선형 시스템에 관한 제어기 설계)

  • 이정석;강민수;김명호;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, a HVAC controller which has a bilinear system is designed to control the air temperature in building room and a saving of energy on the HVAC system. For modeling of the HVAC bilinear system, AHU(Air Handling Unit) is modeled on the control of inside-outside air flow using three dampers in a duct. A heat exchanger and the single room are also modeled by the energy conservation law. Under the modeling of the HVAC bilinear system, the control's law of the bilinear HVAC system is derived by Lyapunov's non-linear theory and Deress's the linear feedback laws for bilinear system. In this paper it was proved that the controller of the HVAC bilinear system is able to control the air temperature with a disturbance in order to get a target of temperature in the building room by the computer simulation when the control inputs regulate the air flow rate and a capacity of the heat exchanger.

  • PDF

A Study on the Filter Media and Performance of Intake Air Filter for Vehicular Engine (자동차 흡기 에어필터의 여재 및 성능에 관한 연구)

  • 안병찬;오명도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Since the vehicle is regarded as the third living space, the comfortable conditions are required in the passenger compartment. For this reason, customers are concerned about the filtering performances and the importance of filter media has been greatly placed. Therefore the dust holding capacity, the efficiency of these filter media (dry paper, wet paper, non-woven) and the configuration of air filter for vehicle were measured in this study. The following results were obtained on the basis of air filter test. It shows that the thickness and poresize of filter media should be lower for the higher efficiency. The measurement result shows that the performance of round shape filters are higher than the square shape filters. The dust holding capacity of the wet paper and the non-woven paper is higher than the dry paper. As a result, this research can provide an important design parameter and product guidance of the intake air filter for vehicular engine.

Case Study of Hybrid HVAC system Applied VRF (VRF 응용 Hybrid 공조시스템 Case Study)

  • Kim, Seong-Sil;Park, Wan-Kyu;Hur, Inn-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.357-362
    • /
    • 2008
  • The present study has been conducted variable refrigerant flow system applied building. Multi air-conditioning system has some benefits : easier building management and maintenance and energy saving. Recently, the system heat pump has been employed in medium-sized and tall buildings. However, the performance data and design method for system heat pump are limited in literature due to complicated system parameters and operating conditions. In the present study, case study of a system heat pump applied various building. The aim of this paper is to application multi air-conditioners and to inform the benefits of multi air-conditioners.

  • PDF

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions (헤더-채널 분기관의 각도변화가 2상 유동 분배에 미치는 영향에 대한 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.559-566
    • /
    • 2015
  • The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.