• Title/Summary/Keyword: air flow

Search Result 6,984, Processing Time 0.035 seconds

The Effect of Feeding Characteristics on the Temperature Distribution of Rotary Kiln (로타리 킬른의 장입 특성이 온도분포에 미치는 영향)

  • Park, Jong-Seok;Chun, Chul-Kyun
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.24-32
    • /
    • 2007
  • A theoretical model was developed for rotary kiln and computational study was conducted to find the effect of feeding characteristics. One dimensional model with the variations of heating distribution, length of heating zone, excess air ratio and revolution was considered. The comparison of parallel-flow rotary kiln with that of counter-flow was conducted. For parallel-flow type, it is found that the variation of temperature of solid is not great for the zone that is following flame-heating zone. This zone is good to take the special treatment because thermal deviation is small and contacting time is enough for another treatment. Increase of excess air ratio have the effect of decreasing solid temperature. But this effect of decreasing solid temperature goes small for the great excess air ratio. The heating is efficient for the flame which has the maximum heating at the central region of the full length.

  • PDF

A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner (축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구)

  • Kim, Jong-Gyu;Kang, Min-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF

A Numerical Analysis on the Natural Convect ion of the Square Channel inner from the Horizontal Plate with Protruding Heat Source (사각 채널 내에서 열원이 부착된 수평 평판에서 자연대류의 수치해석)

  • Kim Byung-Chul;Ju Dong-IN
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.487-490
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

  • PDF

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF

Study on the flow noise generated from the air-cleaner auto louver by changing angle (공기청정기 회전 루버 각도에 따른 유동소음 변화에 관한 연구)

  • Park, Jin-Won;Jung, Yeun-Young;Jeon, Wan-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1007-1010
    • /
    • 2006
  • In order to optimize the rotating angle of the auto louver, the air-cleaner with turbo fan was numerical and experimentally analyzed . The noise generated from the auto louver was changed by modifying the installation angle of the louver. Flow field and flow noise were analyzed numerically by commercial tool SC/Tetra and FlowNoise S/W. Experiment was also done at anechoic chamber. From the numerical and experimental data, we can find the optimal rotating angle for auto louver of the air-cleaner.

  • PDF

Slim Air-Conditioner with Parallel Flow Heat Exchangers for Cooling of Telecommunication Cabinet (평행류 열교환기가 적용된 무선통신 중계기 냉각용 슬림형 공조기)

  • Cho, J.P.;Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • Slim telecommunication cabinet cooler, equipped with parallel flow heat exchangers and operating with R-22, is developed. The performance is compared with imported one, equipped with fin-tube heat exchangers and operating with R-134a. Test results show that the newly-developed cooler increases the cooling capacity by 6% and EER by 33%. The refrigerant charge for the developed cooler is 500g compared with 1250g for the imported one. The adoption of parallel flow heat exchanger appears to have reduced the refrigerant charge. In addition, it is shown that the reduced air flow rates through parallel heat exchangers as compared with those through fin-tube heat exchangers are beneficial to the reduction of the equipment noise.

A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner (축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구)

  • Kim, Jong-Gyu;Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.20-28
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in a regenerative low NOx burner. The object of this study is to analyze self flue gas recirculating flow by varying the jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of fuel using the acetone PLIF technique. It is found that self flue gas recirculating flow is entrained into that line using the two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas lowering the flame temperature.

  • PDF

Influences of Gas and Solid Particle on the Cavitation Erosion-Corrosion (케비테이션 침식-부식에 미치는 기체와 고체입자의 영향)

  • Lim, Uh-Joh;Beak, Suk-Jong;Hwang, Jae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.124-131
    • /
    • 1993
  • Recently. with the rapid development in large sea water systems. there occurs much interest in the study of erosion-corrosion. In this study. the mild steel(SB41) was tested by using of a erosion-corrosion test apparatus with fountain-jet and was investigated under the environments of liquid, air-liquid 2 phase flow and solid particle-liquid 2 phase flow. Main results obtained are as follows : 1. The weight loss by corrosion-erosion in air-liquid 2 phase flow are more increased than that in only liquid solution. 2. Effect of air-liquid 2 phase flow on corrosion-erosion sensitivity becomes more sensitive in natural seawater than that in distilled water. 3. The corrosion potential by corrosion-erosion in air-liquid and solid particle-liquid 2 phase flow becomes noble than that of only liquid solution.

  • PDF

Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System (공기-탄산용융염 이상흐름계에서의 흐름영역전이)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature ($870{\sim}970^{\circ}C$) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.

Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape (허브 형상에 따른 정풍량 환기팬의 유동과 성능특성)

  • Lee, Ho-Ho;Choi, Hang-Cheol;Jung, Jae-Goo;Lee, Yoon-Pyo;Shin, Yoo-Hwan;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.