• 제목/요약/키워드: air filtration

검색결과 228건 처리시간 0.026초

분해탈기법에 의한 염색폐수 중의 고농도 질소 제거에 관한 연구 (Removal of High Strength Nitrogen in Dyeing Wastewater by Decomposition-Air Stripping Process)

  • 조병락
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.213-218
    • /
    • 2002
  • Total nitrogen is a major pollutant which mostly causes eutrophication and red tide. Wastewater effluent from printing of cotton-viscose rayon containing high concentrations of total nitrogen can not be effectively treated with a typical biological treatment process. This paper provides a new treatment process and experimental results for the removal of high strength nitrogen from dyeing wastewater. The optimum conditions of air stripping for the removal of total nitrogen include around pH 12, temperature $60^{\circ}C$ with 60 minutes of stripping time. In case of a filtration-air stripping process, an initial level ($500mg/{\ell}$) of total nitrogen was significantly reduced to below $60mg/{\ell}$. Deconite was synthesised for further decomposition of organic nitrogen. Thus, a filtration-decomposition-air stripping process was possibly achieved, by which a high level ($900mg/{\ell}$) of total nitrogen was effectively removed to below $60mg/{\ell}$ P. Finally, a continuous new process for the removal of total nitrogen is proposed and confirmed, based on batch experimental results, and its process validity is further discussed throughout.

  • PDF

외부전기장 적용 섬유상 에어필터의 절연 전극 사용에 따른 여과특성 (Filtration Performance of Fibrous Air Filter under External Electric Field using Insulated Electrodes)

  • 지성미;손종렬;박현설
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.675-687
    • /
    • 2012
  • Applying an external electric field across air filter media is one of methods to improve the filtration performance. Metal wire meshes have been commonly used as electrodes situated on both sides of a thick filter pad. For a thin filter medium a short circuit, known as the biggest drawback for applying an external electric field to air filter, can occur at the closest point between electrodes. In this study several types of insulated meshes were prepared by coating #50 meshes with a dielectric material, Nylon 66, and the filtration property of air filter was evaluated at the presence of external electric field using those insulated meshes as electrodes and compared with that of filters using bared meshes. The collection efficiency of tested filter was increased from 78% to 95% for singly charged 100 nm particles by application of external electric field. As a result, there was no significant difference in collection efficiency between filters with insulated and bared electrodes. Similar results could be also seen from the tests using polydisperse particles. Finally, through this study, we found that the insulation of mesh electrodes doesn't affect the filtration performance of fibrous air filter under external electric field.

지하역사 승강장 공조 시스템 필터용 항바이러스 코팅 성능 및 재생 성능 평가 (Development of Optimal Antiviral Coating Method for the Air Filtration System of Subway Station)

  • 박대훈;황정호;신동호;김영훈;이건희;박인용;김상복;홍기정;한방우
    • 한국입자에어로졸학회지
    • /
    • 제18권1호
    • /
    • pp.9-21
    • /
    • 2022
  • In this study, a novel antiviral coating method for the air filtration system of subway station was investigated. Using dry aerosol coating process, we developed a high-performance antiviral air filter with spark discharger and carbon brush type ionizer. Silver nanoparticles were produced by a spark discharge generation system with ion injection system and were used as antiviral agents coated onto a medium grade air filter. The pressure drop, filtration efficiency, and antiviral ability of the filter against aerosolized MS2 virus particles as a surrogate of SARS-CoV-2 virus were tested with dust contamination. Dust contamination caused the increase of the filtration efficiency and pressure drop, while the antiviral agents (in this study, silver nanoparticles) coating did not have any significant effect on the filtration efficiency and pressure drop. Using these properties, we suggested a novel method to maximize the antiviral performance of the antiviral air filter that was contaminated by dust particles. Moreover theoretical analysis of antiviral ability with dust contamination and re-coated antiviral agents was carried out using a mathematical model to calculate the time-dependent antiviral effect of the filter under actual conditions of subway station. Our model can be used to apply on antiviral air filtration system of subway station for prevention of pandemic diffusion, and predict the life cycle of an antiviral filter.

연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측 (A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance)

  • 손정삼;서정민;박정호
    • 한국환경과학회지
    • /
    • 제32권8호
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.

응집과 여과를 이용한 조류의 초고속 제어에 관한 연구 (High-rate Removal of Algae by Using of Filtration System with Coagulant Addition)

  • 윤상린;김동하;이영규
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.221-228
    • /
    • 2002
  • Abundant growth of algae in raw water sources caused by eutrophication brings about significant side effects on water supply, such as taste and order problem, oxygen depletion, toxic material secretion, and filter clogging problem in water treatment process, etc. The purpose of this research is to remove the algae and phosphorus compounds in the Pal-dang reservoir promptly by using the upflow filtration system with coagulant addition. The filter tower consisted of sand media and sieve filter with air back-washing process. By using coagulation and filtration with $132{\mu}m$ pore size filter, about 55% and 70% of algae and phosphorus compounds were removed respectively. The experimental conditions were as follows; head loss of 0.2m, linear velocity of 200m/day, and filtration flux of 1000($L/m^2/day$). In the case of filtration with cartridge type filter of $25{\mu}m$ pore size, the filtration flux was about 7800 LMH, and the removal ratios of COD, SS, T-P, and Chlo-a. were 61%, 99%, 54%, and 98%, respectively. However, high pressure air back-washing process with should be required for the maintenance of such high filtration flux.

그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구 (Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion)

  • 조경일;강기원;신지윤;김창혁
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

탄소섬유 이오나이저를 적용한 활성탄소섬유 필터의 바이오에어로졸 항균 및 집진 성능평가 (Inactivation and Filtration of Bioaerosols Using Carbon Fiber Ionizer Assisted Activated Carbon Fiber Filter)

  • 김두영;박재홍;황정호
    • 한국입자에어로졸학회지
    • /
    • 제6권4호
    • /
    • pp.185-192
    • /
    • 2010
  • This paper reports that the installation of a carbon fiber ionizer in front of an activated carbon fiber(ACF) filter enhanced the antibacterial efficiency. In addition, the effect of the ionizer on the filtration of bioaerosols is reported. Negative air ions from the ionizer were used as antibacterial agent. The test bacteria(Escherichia coli) were aerosolized using an atomizer and were deposited on the ACF filter media for 10 minutes. E. coli deposited on the filter were exposed to negative air ions for 0, 1, 5 and 10 minutes. Then they were separated from the ACF filter by shaking incubation with nutrient broth for 4 hours. The separated E. coli were spread on nutrient agar plates and incubated at $37^{\circ}C$ for 1~3 days. The antibacterial efficiency of E. coli was measured using a colony counting method. The antibacterial efficiencies of E. coli exposed to negative air ions for 1, 5 and 10 minutes were 14%, 48% and 71%, respectively. The filtration efficiency was evaluated by measuring the number concentration of bioaerosols at the upstream and downstream of the filter media. The increase of filtration efficiency by air ions was 14%, that is similar to the 17% filtration efficiency by none air ions. The ozone concentration was below the detection limit (under 0.01ppm) when the carbon fiber ionizers were on.

공기 중 미세먼지와 휘발성유기화합물 제거를 위한 활성탄 전기방사 필터 연구 (Study on Electrospun Activated Carbon Mats for the Filtration of Particulate Matter and Volatile Organic Compound in the Air)

  • 한상일
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.356-360
    • /
    • 2018
  • 인구증가와 개발 도상 국가의 산업 활동 증가로 인해 대기 중 미세먼지농도가 상승함에 따라 생태계에 미치는 영향이 심각해지고 있다. 그로인해 미세먼지발생을 줄이기 위한 정책을 수립하여 시행하거나 미세먼지를 여과해주는 공기청정기나 마스크의 연구가 활발히 이루어지고 있다. 본 연구에서는 전기방사실험을 통해 셀룰로스 아세테이트 파이버 필터를 제조하고 고분자용액에 활성탄을 첨가하여 미세입자 제거에 미치는 활성탄의 영향을 평가하였다. 미세입자 생성을 위해 염화나트륨 수용액을 사용하였으며, 공기 중 수분의 영향을 배제하기 위해 건조기를 설치하여 수분을 제거한 후 필터 성능을 분석하였다. 활성탄이 첨가될수록 미세입자 제거 효율은 증가하였으며, 아세톤 흡착량 또한 증가하였다.