• Title/Summary/Keyword: air filter

Search Result 1,007, Processing Time 0.029 seconds

Study on the Indoor Air Purification Technology by Using Nonthermal Plasma (비열 방전 플라즈마에 의한 실내 공기 청정기술 연구)

  • Jung, Jae-Seung;Lee, Heon-Gyeong;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.31-36
    • /
    • 2016
  • For the purpose of indoor air purification, air conditioner or purifier is generally used, but the long operating time induced the contamination by cumulation of bacteria in the air filter. The ozone sterilization method can be one of the effective sterilization method for this case. Ozone has not leave a secondary residual contaminants, as well as a strong sterilization power. In this study, nonthermal plasma technology is investigated as an ozone generator for the air filter sterilization. Additionally, nonthermal plasma technology is possible to obtain the generation of negative ions and electrostatic force by simply adjusting the applied voltage.

Performance Test of Domestic Glass Fabric by varying cleaning conditions in a Pulse-Jet Cleaned Fabric Filter (충격기류 탈진방식 여과포집진장치에서 탈진조건 변화에 따른 국산유리섬유여과포의 성능시험)

  • 박영옥;구철오;임정환;김영성;손재익
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Performance of domestic glass fabrics was tested in a Pulse- jet cleaned fabric filter under simulated coal combustion. Pulse Pressure were 2.5, 4.0kgf/$\textrm{cm}^2$ and pulse air nozzle diameter were 4.0, 6.0mm Pressure drop and penetration turned out to be low at small pulse air nozzle diameter and low pulse air pressure. Fractional penetration through the dust cake and fabric at face velocity of 1.7m/min was higher than that at face velocity of 1.0m/min. As a consequense, the performance of domestic glass fabrics was better with face velocity of less than 1.0m/min, pulse air pressure of 2.5 kgf/$\textrm{cm}^2$ and pusle air nozzle diameter of 4.0mm.

  • PDF

Analysis of Treatment Efficiency of Cylinder-Shaped Filter for Construction Site Runoff Control (건설현장 탁수제어를 위한 원통형 여과장치의 처리효율 분석)

  • Choi, Jongsoo;Kong, Young-San;Lee, Jung-Min;Bang, Ki-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.532-538
    • /
    • 2014
  • A cylinder-shaped filter was developed to manage the runoff from construction sites. Compressed air was used for back-washing and pore sizes of filter were $23{\mu}m$ and $46{\mu}m$. The turbid water was prepared using sediments in construction sites. The grain size analysis showed that grains smaller than $38{\mu}m$ and larger than $335{\mu}m$ in size constituted 34.4 % and 37.6 %, respectively. Removal efficiency of the filter on turbidity, SS, COD, TN and TP showed 25~37%, 20~40%, 50~55%, 23~27% and 14~20%, respectively, whereas their removal efficiecy by using coagulant PAC showed 77~84%, 70~83%, 53~60%, 27~36%, and 59~75%, respectively. The filtration time was determined to be around 10 to 20 minutes. Back-washing for 10 seconds by pressurized air resulted in a satisfactory regeneration efficiency. According to the aforementioned test results, the cylinder-shaped filter is effective in reducing turbidity and would be suitable for practical application in construction sites and farms.

Pilot Scale Test of Non-woven Fabric Filter Separation Activated Sludge Process for Practical Application on Domestic Wastewater Reclamation (파일럿 규모의 침지식 부직포 여재 활성슬러지 공정의 시스템 처리 특성에 관한 연구)

  • Lee, Sang-Woo;Choi, Chul-hoi;Park, Young-mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.289-294
    • /
    • 2006
  • A pilot scale non-woven fabric filter separation activated sludge system was investigated for practical application on domestic wastewater reclamation and reuse. The system was operated in A/O (Anaerobic/Oxic) process with submerged filter module in the aerobic compartment. In the test of two types of filter materials ($70g/m^2$ and $35g/m^2$), the initial flux (0.42m/d) could be maintained for about three months by regular air backwashing of $70g/m^2$ filter at 0.3m water head. The removal efficiency of organic matter by the system was BOD 93.3%, CODcr 96.3%, SS 96.7%. The effluent quality was 7.8mg/L, 12mg/L and 5mg/L for BOD, CODcr and SS, respectively. The water quality was enough to meet a standard for domestic reuse without human contact. T-N removal efficiency was 49.9% at internal recycle rate 2Q and C/N ratio 3.3. The removal efficiency of T-P was 50% with average effluent concentration, 2.6mg/L.

Fault Detection of Aircraft Turbofan Engine System Using a Fault Detection Filter (고장 검출 필터를 사용한 항공기 터보팬 엔진 시스템의 고장 검출)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.330-336
    • /
    • 2021
  • A typical way to reduce the number of hardware redundancy configurations is to implement them as analytical techniques for detecting, identifying and accepting failures with micro-controller. In this paper, one of the analytical techniques, the fault detection filter, is applied to aircraft turbofan engine system. The fault detection filter is a special type of observer that has the advantage of being able to determine the location of failures by maintaining a constant direction in the output space in the event of a particular failure. We present a single input/output dynamic system modeling of air turbine system in turbofan engine, a fault detection filter design, and simulation results applying it. Simulation results show that fault detection can be effectively applied as a sensitivity effect to the directionality of the detection filter.

Loss of Metalworking Fluids Collected on PVC Filter Due to Contact with Clean Air and Desiccation (PVC필터에 채취된 절삭유의 손실에 관한 연구)

  • Park, Dong-Uk;Ha, Kwon-Chul
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.451-457
    • /
    • 2001
  • Because liquids with high molecular weight such as mineral oil have low vapor pressure at room temperature, it is generally thought to be difficult to lose them to evaporation. However, when they are dispersed into air in small droplets during application in machining processes, their surface area becomes considerably higher. To determine the potential for metalworking fluids (MWF) filter losses, MWF mist was generated and collected on polyvinyl chloride (PVC) filters in test chamber. After collected MWF was exposed to clean air during designated period (range 10~240 minutes) and the filters were desiccated, losses were evaluated. As duration of clean air passing through PVC filter increased, loss of MWF gradually increased. MWF lost after 10 minutes ranged form 12.4 % to 21.8 % of the original loading mass, on average 53.3 % of the total loss. These results indicate that significant mass of MWF collected on PVC filters can be lost at the beginning of air sampling. Loss of MWF collected on PVC filter also occurred during desiccation without active airflow. In multiple regression to identify which factors influence the loss of MWF collected on PVC filter, both duration of air passing through PVC filter and MWF age (fresh vs. used) were significant predictor (p=0.0001). Therefore, workers' exposure to MWF measured method 0500, may underestimate true concentration. Further study is needed to develop a new method to quantify the workers' exposure to airborne MWF mist accurately.

  • PDF

Comparative Efficiency Evaluation of Air Cleaners for Improving Indoor Air Quality (실내용 공기청정기 유형별 실내환경개선 성능에 대한 비교평가)

  • Na, Kyung-Ho;Son, Jin-Seok;Sung, Kijune;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.109-115
    • /
    • 2005
  • This study was conducted to evaluate the efficiency of indoor air cleaners and to inform how to select them correctly to the users. The efficiencies of removing suspended bacteria per hour were $64.3{\pm}13.1%$ for filter, wet, and complex type, respectively, which showed the complex type was the most efficient. The removal efficiencies of formaldehyde (HCHO) after two hours operation of air cleaners showed 88.3% and 81.1% for filter and wet type, respectively. The efficiency of complex type, with removal rate of 55.5~58.4%, was decreased after 30 minutes operation. Therefore, it is recommended to perform over 60 minutes when doing air cleaner certification test for HCHO removal efficiency. Generally, air cleaners having low wind volume showed higher efficiency. All tested air cleaners had no potential for removing of volatile organic compounds (VOCs), which is toxic substances, and it is desirable to develop a device which can control these substances. The results also confirmed that there was no ozone production from all tested air cleaners. And it is recommended to ventilate for 20 minutes every four hours to maintain 50% ventilation status.