• Title/Summary/Keyword: air exposure time

Search Result 338, Processing Time 0.029 seconds

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(III) - Contribution and distribution characteristics of air pollutants according to elemental carbon, crystalline silica, and stable isotope ratio - (대구 안심연료단지 환경오염물질 노출 평가(III) - 원소 탄소, 결정형 실리카 및 안정동위원소비를 이용한 오염원 기여율 및 분포특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Shon, Byung-Hyun;Bae, Hye-Jeong;Yang, Won-Ho;Kim, Ji-Young;Kim, Geun-Bae;Choi, Jong-Woo;Park, Sung-Jun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.392-404
    • /
    • 2015
  • Objectives: This study measured and analyzed the concentrations of crystalline silica, elemental carbon and the contribution ratio of pollutants which influence environmental and respiratory disease around the Ansim Briquette Fuel Complex in Daegu, Korea. Methods: We analyzed the crystalline silica and elemental carbon in the air according to FTIR(Fourier Transform Infrared Spectroscopy) and NIOSH(National Institute of Occupation Safety and Health) method 5040, respectively. In addition, lead stable isotopes, and carbon and nitrogen stable isotopes were analyzed using MC-ICP/MS(Multi Collector-Inductively Coupled Plasma/Mass Spectrometer), and IRMS(Isotope Ratio Mass Spectrometer), respectively. Results: The concentration of crystalline silica in the direct exposure area around the Ansim Briquette Fuel Complex was found to be $0.0014{\pm}0.0005mg/Sm^3$, but not to exceed the exposure standards of the ACGIH(American Conference of Governmental Industrial Hygienists). In the case of the autumn, the direct exposure area was found to show a level 2.5 times higher than the reference area, and on the whole, the direct exposure area was found to have a level 1.4 times higher than the reference area. The concentration of elemental carbon in the direct exposure area and in the reference area were found to be $0.0014{\pm}0.0006mg/Sm^3$, and $0.0006{\pm}0.0003mg/Sm^3$, respectively. This study confirmed the contribution ratio of coal raw materials to residentially deposited dusts in the area within 500 meters from the Ansim Briquette Fuel Complex and the surrounding area with a stable isotope ratio of 24.0%(0.7-62.7%) on average in the case of carbon and nitrogen, and 33.9%(26.6-54.1%) on average in the case of lead stable isotopes. Conclusions: This study was able to confirm correlations with coal raw materials used by the Ansim Briquette Fuel Complex and the surrounding area. The concentration of some pollutants, crystalline silica, and elemental carbon emitted to the direct-influence area around the Ansim Briquette Fuel Complex were relatively higher than in the reference area. Therefore, we need to impose continuous and substantive reduction countermeasures in the future to prevent particulate matter and coal raw materials in the study area. It is time for the local government and authorities to prepare active administrative methods such as the relocation of Ansim Briquette Fuel Complex.

Injury Responses of Landscape Woody Plants to Air Pollutants - Visible Injury and Ethylene Production - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 피해반응(被害反應)(II) - 엽피해(葉被害)와 Ethylene 발생량(發生量)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.328-336
    • /
    • 1993
  • This study was conducted to investigate sensitivity of tree seedlings to $SO_2$. Visible injury symptoms and changes of ethylene production were investigated in tree seedlings with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. The symptoms of visible injury did not appear below 0.5ppm level of $SO_2$ exposure but a change of visible injury with the passage of time appeared at 1.5 and 2.5ppm in all seedlings. With the higher the concentration and/or the longer exposure of $SO_2$ the visible injury symptoms on leaves increased in all seedlings. The sensitivity of seedlings to $SO_2$ was the highest in Liriodendron tulipifera followed by Pinus strobus, Ginkgo biloba, Pinus densiflora and Pinus koraiensis. The amount of ethylene production was more at 1.5 and 2.5ppm of $SO_2$ exposure than at 0.5ppm and the peak time of it came faster at higher levels. The amount of ethylene production was significantly different among tree seedlings. It showed a higher at production of ethylene in Liriodendron tulipifera compared to Ginkgo biloba and the ethylene production of Pinus trees to $SO_2$ were the highest in Pinus strobus followed by Pinus densiflora and Pinus koraiensis. In needle of Pinus strobus the ethylene production increased with the increasing rate of visible injury until the injury rate of 40-50% and than decreased with the increasing rate of visible injury since the rate of 50%.

  • PDF

Evaluation of Effective Dose and Exposure Levels of Radon in Office and Plant Buildings (일부 제조업 사업장의 사무 및 공장동에서의 라돈농도 수준 및 유효선량 평가)

  • Chung, Eun Kyo;Kim, Ki Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • Objectives: Radon may be second only to smoking as a cause of lung cancer. Radon is a colorless, tasteless radioactive gas that is formed via the radioactive decay of radium. Therefore, radon levels can build up based on the amount of radium contained in construction materials such as phospho-gypsum board or when ventilation rates are low. This study provides our findings from evaluation of radon gas at facilities and offices in an industrial complex. Methods: We evaluated the office rooms and processes of 12 manufacturing factories from May 14, 2014 to September 23, 2014. Short-term data were measured by using real-time monitoring detectors(Model 1030, Sun Nuclear Co., USA) indoors in the office buildings. The radon measurements were recorded at 30-minute intervals over approximately 48 hours. The limit of detection of this instrument is $3.7Bq/m^3$. Also, long-term data were measured by using ${\alpha}-track$ radon detectors(${\alpha}-track$, Rn-tech Co., Korea) in the office and factory buildings. Our detectors were exposed for over 90 days, resulting in a minimum detectable concentration of $7.4Bq/m^3$. Detectors were placed 150-220 cm above the floor. Results: Radon concentrations averaged $20.6{\pm}17.0Bq/m^3$($3.7-115.8Bq/m^3$) in the overall area. The monthly mean concentration of radon by building materials were in the order of gypsum>concrete>cement. Radon concentrations were measured using ${\alpha}-track$ in parallel with direct-reading radon detectors and the two metric methods for radon monitoring were compared. A t-test for the two sampling methods showed that there is no difference between the average radon concentrations(p<0.05). Most of the office buildings did not have central air-conditioning, but several rooms had window- or ceiling-mounted units. Employees could also open windows. The first, second and third floors were used mainly for office work. Conclusions: Radon levels measured during this assessment in the office rooms of buildings and processes in factories were well below the ICRP reference level of $1,000Bq/m^3$ for workplaces and also below the lower USEPA residential guideline of $148Bq/m^3$. The range of indoor annual effective dose due to radon exposure for workers working in the office and factory buildings was 0.01 to 1.45 mSv/yr. Construction materials such as phospho-gypsum board, concrete and cement were the main emission sources for workers' exposure.

Propeller racing of ocean-going ships with multiple screw propellers (다축선의 프로펠러 레이싱 추정에 관한 연구)

  • Park, Jong-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.222-231
    • /
    • 2007
  • This paper represents a basic statistical examination on the navigability of ocean-going ship from the point of estimating the time lasting period when propeller racing occurred by using the basic probability theory and the statistics. The propeller racing is one of the most important seakeeping qualities in relation to the safety of the main engine and shafting system. The trend of the racing has been mainly investigated in order to estimate allowable maximum propeller diameter, operation of ocean-going ships, etc.. In those studies, the propeller racing generally and mainly means the situation (propeller exposed) in which the relative motion amplitude between ship hull and wave surface would exceed a depth of point in rotary disk propeller. Therefore, it seems that the magnitude of the amplitude and its exceeding frequency of propeller racing have been examined as a principal subject of study as usual. However, the time during which the amplitude exceeds the depth of point, that is, the propeller exposes in the air, must be also one of most important factor affecting the trend of propeller racing. Then, this paper proposes a new practical method for estimating the time lasting of exposed propeller related to propeller racing in rough-confused seas on the basis of the linear strip theory and the statistics. And, numerical examples of estimating the propeller racing probability are given for four wide ship forms. Finally the usefulness of the proposed method for predicting propeller racing based on the time lasting period is discussed.

Pretreatment of Fish for the determination of polycyclic aromatic hydrocarbons using alkali digestion (알칼리분해를 이용한 어류 중 다환방향족탄화수소의 전처리방법)

  • Hu, Soojung;Lee, Hyomin;Chae, Youngzoo;Yoo, Eun-Ah
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.403-409
    • /
    • 2005
  • Polycyclic Aromatic Hydrocarbons(PAHs) contamination arises from several sources including processing of food(smoking, direct drying, cooking) and environmental contamination of air, water, or soil, the later being considered as the most important. In this study, to establish the analytical method for some PAHs[benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene] in fish, alkali digestion time, extraction solvents, elution volume of florisil cartridge for clean-up have been optimized. The methodology involved saponification and extraction with n-hexane, clean-up on Sep-Pak florisil cartridges and determination by HPLC/FLD(High Performance Liquid Chromatography/Fluorescence Detector). Overall method recoveries for 8 PAHs spiked into these products ranged from 90 to 106%.

The Character of Contents Production System in the Comprehensive Programming Channels (종합편성채널의 콘텐츠 생산 방식의 특성)

  • Roh, Dong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.731-741
    • /
    • 2016
  • It has become five years since comprehensive programming licenses were rendered in Korea. Allocating a lion's share of their air time on live news and news commentaries, those channels have established a unique live production system or a broadcasting system which is heavily live production-oriented, to be exact. The live commentaries are filled with a mixture of news flashes, conventional news commentaries, and debates. Those channels get their news and commentary programs made through subsidiaries' where production directors and studio staffs belong. They, being very sensitive about viewer rating, tend to be aggressive about reruns of highly rated programs and they do not even seem to care when the regular programs actually went out. This kind of reckless strategy to pursue a higher viewer rating could limit not only new programming attempts but also exposure diversity.

Evaluation of Short-Term Exposure Levels on Ammonia and Hydrogen Sulfide During Manure-Handling Processes at Livestock Farms

  • Park, Jihoon;Kang, Taesun;Heo, Yong;Lee, Kiyoung;Kim, Kyungran;Lee, Kyungsuk;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2020
  • Background: Ammonia and hydrogen sulfide are harmful gases generated during aerobic/anaerobic bacterial decomposition of livestock manure. We evaluated ammonia and hydrogen sulfide concentrations generated from workplaces at livestock farms and determined environmental factors influencing the gas concentrations. Methods: Five commercial swine farms and five poultry farms were selected for monitoring. Real-time monitors were used to measure the ammonia and hydrogen sulfide concentrations and environmental conditions during the manure-handling processes. Monitoring was conducted in the manure storage facility and composting facility. Information on the farm conditions was also collected through interview and walk-through survey. Results: The ammonia concentrations were significantly higher at the swine composting facilities (9.5-43.2 ppm) than at other manure-handling facilities at the swine and poultry farms, and high concentrations of hydrogen sulfide were identified during the manure agitation and mixing process at the swine manure storage facilities (6.9-19.5 ppm). At the poultry manure-handling facilities, the ammonia concentration was higher during the manure-handling processes (2.6-57.9 ppm), and very low hydrogen sulfide concentrations (0-3.4 ppm) were detected. The air temperature and relative humidity, volume of the facility, duration of manure storage, and the number of animals influenced the gas concentrations. Conclusion: A high level of hazardous gases was generated during manure handling, and some levels increased up to risk levels that can threaten workers' health and safety. Some of the farm operational factors were also found to influence the gas levels. By controlling and improving these factors, it would be possible to protect workers' safety and health from occupational risks.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

Acute Hydrogen Cyanide Poisoning in a Plating Worker and Workplace Measurement (도금 사업장 근로자에게 발생한 시안화수소 급성중독과 작업환경평가)

  • Ham, Seunghon;Choi, Won-Jun;Lee, Junhyung;Lim, Yong su;Kang, Jihyun;Kang, Seong-Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.336-342
    • /
    • 2019
  • Introduction: An unexpected death was reported in a beginner immediately after starting the work at a plating factory. After the incident, air sampling was performed using a simulation of the situation as it had been at the time. Methods: To evaluate the airborne concentration of hydrogen cyanide, a total of six samples were collected: one personal sample, three area samples, and two background samples (office and outdoors). Hydrogen cyanide measurement was performed according to the standard sampling protocol recommended by the U.S. NIOSH (National Institute of Occupational Safety and Health). Results: The highest concentration of hydrogen cyanide was 0.938 ppm measured in a sample collected from the plating bath area with local exhaust ventilation. This value was approximately 20% of the ceiling occupational exposure limit. The personal sample showed a concentration of 0.135 ppm. Samples collected near the bath in which the incident occurred and a dehydrator showed hydrogen cyanide concentrations of 0.236 ppm and 0.101 ppm, respectively. Hydrogen cyanide was not detected in the background samples (office and outdoors). Conclusions: It is necessary to use proper ventilation systems and respirators in plating factories to prevent acute poisoning. Furthermore, it is important to educate and train new workers dealing with toxic substances.

Proposed Institutional Diagnostic Reference Levels in Computed and Direct Digital Radiography Examinations in Two Teaching Hospitals

  • Emmanuel Gyan;George Amoako;Stephen Inkoom;Christiana Subaar;Barry Rahman Maamah
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • Background: The detectors of both computed radiography (CR) and direct digital radiography (DR) have a wide dynamic range that could tolerate high values of exposure factors without an adverse effect on image quality. Therefore, this study aims to assess patient radiation dose and proposes institutional diagnostic reference levels (DRLs) for two teaching hospitals in Ghana. Materials and Methods: CR and DR systems were utilized in this study from two teaching hospitals. The CR system was manufactured by Philips Medical Systems DMC GmbH, while the DR system was manufactured by General Electric. The entrance skin doses (ESDs) were calculated using the standard equation and the tube output measurements. Free-in-air kerma (µGy) was measured using a calibrated radiation dosimeter. The proposed institutional DRLs were estimated using 75th percentiles values of the estimated ESDs for nine radiographic projections. Results and Discussion: The calculated DRLs were 0.4, 1.6, 3.4, 0.5, 0.4, 1.1, 1.0, 1.2, and 1.7 mGy for chest posteroanterior (PA), lumbar spine anteroposterior (AP), lumbar spine lateral (LAT), cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively in CR system. In the DR system, the values were 0.3, 1.6, 3.1, 0.4, 0.3, 0.7, 0.6, 0.9, and 1.3 for chest PA, lumbar spine AP, lumbar spine LAT, cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively. Conclusion: Institutional DRLs in nine radiographic projections have been proposed for two teaching hospitals in Ghana for the first time. The proposed DRLs will serve as baseline data for establishing local DRLs in the hospitals and will be a valuable tool in optimizing patient doses.