• 제목/요약/키워드: air break

검색결과 176건 처리시간 0.029초

Study on icebreaking performance of the Korea icebreaker ARAON in the arctic sea

  • Kim, Hyun-Soo;Lee, Chun-Ju;Choi, Kyung-Sik;Kim, Moon-Chan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.208-215
    • /
    • 2011
  • A full-scale field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. The first Korean icebreaking research vessel 'ARAON', after her delivery in late 2009, had a sea ice field trial in the Arctic Sea during July-August, 2010. This paper describes the test procedures and data analysis on the icebreaking performance of the IBRV ARAON. The data gathered from the icebreaking performance test in the Chukchi Sea and the Beaufort Sea during the Arctic voyage of ARAON includes the speed and engine power of the ship as well as sea ice thickness and strength data. The air temperature, wind speed and heading of the ship were also measured during each sea ice trial. The ARAON was designed to break 1 m thick level ice with a flexural strength of 630kPa at a continuous speed of 3knots. She is registered as a KR POLAR 10 class ship. The principal dimensions of ARAON are 110 m, 19 m and 6.8 m in length, breadth and draft respectively. She is equipped with four 3,500kW diesel-electric main engines and two Azipod type propulsion motors. Four sea ice trials were carried out to understand the relationship between the engine power and the ship speed, given the Arctic ice condition. The analysis shows that the ARAON was able to operate at 1.5knots in a 2.5m thick medium ice floe condition with the engine power of 5MW, and the speed reached 3.1 knots at the same ice floe condition when the power increased to 6.6MW. She showed a good performance of speed in medium ice floe compared to the speed performance in level ice. More detailed analysis is summarized in this paper.

실측 실험을 통한 단열문의 열성능 평가 (Thermal Performance Assessment of Insulated door by experiment.)

  • 장철용;김치훈;안병립;홍원화
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.47-52
    • /
    • 2011
  • Currently, Exterior wall's U-value about building envelope is 0.36 W/$m^2K$(Central Region), but window's one is 2.1 W/$m^2K$ according to air gap of glazing, filling gas, coating and type of windows. The door"s one is 1.6~5.5 W/$m^2{\cdot}K$ depending on material and configuration of door. As such, energy loss per unit of door is considerably larger like windows. The door for the recognition was relatively low because energy loss through the door is relatively small compared to window area. In this paper, thermal performance was analyzed through simulation targeting the door which has thermal break that can improve the insulation performance and doesn't have one. As a results of simulations, case1 was calculated as the average of 1.63 w/m2k and case 2 was calculated as the average of 4.14 w/m2k. The thermal performance of door depends on the type and condition of insulations. As a results of final simulations, Case1 was calculated as 1.06 w/m2k and Case2 was calculated as 1.27 w/m2k. As a results of the experiments, thermal performance of case 1 was measured as 1.28 w/m2k. Error between experiments and simulations is considered problems encountered when creating the samples. The effect of door frame on the overall thermal performance is slight because it's a small proportion of the door frame.

횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성 (Spray Characteristics of Jet According to Position of Injector Hole in Crossflow)

  • 최명환;신동수;;손민;구자예
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.88-96
    • /
    • 2018
  • 공기와 물을 사용하여 인젝터의 위치와 운동량 플럭스 비가 수직유동이 횡단유동장내의 수직 분사 제트에 미치는 영향을 정성적으로 연구하고 도시하였다. 운동량 플럭스 비를 고정하고 인젝터 홀의 위치를 변화시킨 후 역으로 인젝터 홀의 위치를 고정하고 운동량 플럭스 비를 변화시켰다. 이미지 가시화는 고속카메라를 이용하여 Shadowgraph 기법을 사용하였다. 가시화된 이미지는 밀도구배강도 이미지를 통하여 분무의 차이가 비교되었다. 장치의 x/d가 증가할수록 액주 기둥의 높이가 낮아지는 것을 확인하였다. x/d가 0일 때는 어떤 운동량 플럭스 비에서도 분무가 바닥 또는 천장에 닿게 되는 결과를 보였다.

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

개화기에 저온 피해를 받은 '후지'/M.9 사과나무의 하계전정 시기가 신초생장 및 과실품질에 미치는 영향 (Influence of Summer Pruning Time on Shoot Growth and Fruit Quality of 'Fuji'/M.9 Apple Tree Damaged by the Low Air Temperature at Flowering Period)

  • 권헌중;사공동훈
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.328-334
    • /
    • 2022
  • BACKGROUND: The low temperature at flowering period break the balance between vegetative and reproductive growth of apple tree. Summer pruning has been used to control vegetative growth. So, this study was conducted to investigate the effect of summer pruning time on shoot growth and fruit quality of 'Fuji'/M.9 apple trees damaged by the low temperature at flowering period. METHODS AND RESULTS: The following treatments were applied to tree : a) control (no summer pruning), b) pruned 26 June, c) pruned 30 July, d) pruned 28 August, and e) pruned 26 September. The summer pruning significantly increased light penetration and fruit red color by reducing the total shoot growth compared with control. And the summer pruning control the outbreak of apple valsa canker. But the summer pruning at the end of June increased regrowth of shoot and pruning weight compared with the summer pruning at the end of August. The summer pruning at 30 July had the highest fruit weight, but return bloom was the highest in the summer pruning at 28 August. CONCLUSION(S): These results indicated the optimum summer pruning time of 'Fuji'/M.9 apple trees damaged by the low temperature at flowering period were the end of August.

몰드변압기의 보이드 결함 크기 판별 (Identification of Void Diameters for Cast-Resin Transformers)

  • 정기우;김성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.570-573
    • /
    • 2022
  • 본 논문에서는 신경망 모델을 적용한 몰드변압기의 보이드 결함 크기 판별에 관한 연구를 수행하였다. PCB 기반의 로고우스키 코일형 부분방전 센서를 제작하여 부분방전 신호를 측정하였고, 보이드에 의한 부분방전 결함을 모의하기 위한 PD 전극계를 제작하였다. 또한 보이드는 원통형 모양의 알루미늄 틀을 제작하여 에폭시가 경화되는 과정에서 실린지를 삽입하고 공기를 주입하여 서로다른 직경을 가지는 4개의 시편을 제작하였다. 보이드 결함 크기 판별을 위해 부분방전 전하량, 방전 펄스 수, 위상 분포의 부분방전 특성 파라미터를 추출하여 Labview 기반의 VI (Virtual Instrument)로 역전파 알고리즘을 설계하였다. 실험 결과로부터 제작된 알고리즘은 90%이상의 판별률로 결함의 직경크기를 구분할 수 있었다. 본 연구의 결과는 현장에서 PD 측정 시 몰드변압기의 유지보수 및 절연물 교체의 근거 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • 한국식품영양과학회지
    • /
    • 제22권3호
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

조선 중기 이후 서울의 장마철 강수 평균과 극한강수현상의 변화 (Changes in Means and Extreme Events of Changma-Period Precipitation Since mid-Joseon Dynasty in Seoul, Korea)

  • 최광용
    • 대한지리학회지
    • /
    • 제51권1호
    • /
    • pp.23-40
    • /
    • 2016
  • 본 연구에서는 조선시대 측우기(1777~1907년)와 현대적 기상장비(1908~2015년)로 측정한 강우량 자료를 종합 분석하여 서울의 장마철 강수량과 극한강수현상에 나타난 장기간 변화 양상을 밝히고자 하였다. 또한 이와 관련된 동아시아 영역의 종관 기후장에 나타난 변화 특징을 밝히고자 하였다. 약 239년 동안의 서울의 강수자료 시계열을 분석한 결과, 20세기 후반으로 올수록 장마철(6월 하순~9월 초순) 강수량이 증가하고, 경년변동성도 더 커짐을 알 수 있다. 특히 1990년대 초반부터는 장마철 중에서도 여름장마기(6월 하순~7월 중순)와 장마 휴지기(7월 하순~8월 초순)에 극한강수현상 중심의 강수량이 뚜렷하게 증가하면서 장마기의 구분이 모호해지고 있음을 알 수 있다. 이와 관련하여 변화가 뚜렷한 1990년 전후의 상층 종관기후장을 비교해 보면, 최근에는 북서태평양 주변의 해수면 온도가 상승하고 북태평양 아열대 고기압 강도가 강화되어 해양성 기단이 한반도 방향으로 더 확장하고, 유라시아 대륙 내부 몽골 지역을 중심으로 강한 고기압 편차핵이 형성되면서 고위도로부터 기류가 더 활발하게 유입되고 있음을 알 수 있다. 즉, 서로 다른 성질의 기류들이 강해지면서 이들 기류들이 만나는 북서태평양 연안 지역에 상승 기류 흐름이 활발해지면서 최근에는 서울의 장마철 강수평균 및 극한강수현상이 증가하였다고 할 수 있다.

  • PDF

농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발 (Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk)

  • 유영선;김미경;박명종;최성욱
    • 청정기술
    • /
    • 제20권3호
    • /
    • pp.205-211
    • /
    • 2014
  • 식물로부터 유래하는 바이오매스를 25% 이상 함유하는 바이오 베이스 플라스틱은 탄소배출을 억제하는 효과가 있고, 한정된 자원인 석유의 소비량을 줄일 수 있으며, 산화생분해 첨가제를 추가 적용하면 폐기 후에는 미생물에 의해 생분해(Biodegradable)되기 때문에 친환경적인 소재이다. 본 연구에서는 폴리에틸렌에 산화생분해 첨가제, 4종류 식물체 바이오매스, 불포화 지방산, 구연산을 첨가하여 생분해성 및 물성변화를 관찰하였다. 초기 신장율과 인장강도 등의 물성이 우수한 자연에 분해되는 바이오 플라스틱 필름을 제조하여 식품포장재로서의 제품 안전성을 시험하였다. 옥피, 대두피, 왕겨, 소맥피의 식물체를 Air classifying mill로 분체한 후, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 기타 첨가제를 고속혼합기에서 혼합한 후, 호퍼에 투입한 다음 용융혼합하면서 다이스로 압출하여 4 가지 다른 형태의 두께 $50{\mu}m$의 바이오 필름을 제조하였다. 기계적 물성으로 인장강도 및 신장율을 측정하였으며, 생분해 실험을 실시하였다. 옥피, 대두피, 왕겨, 소맥피로 제조된 필름 중 소맥피로 제조된 필름의 인장강도 및 신장율이 가장 좋은 것으로 나타났다. 또한 산화생분해 시험방법에 의해 45일간 생분해 테스트를 한 결과 표준물질인 셀룰로오스 분말 대비 51.5%의 생분해를 나타내었다.

소공간 실험구의 차광과 통풍에 의한 기온저감 효과 (Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots)

  • 김현철;우지근
    • 한국환경복원기술학회지
    • /
    • 제13권6호
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.