• 제목/요약/키워드: air blown

검색결과 55건 처리시간 0.022초

대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석 (COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS)

  • 프린스 라즈;명노신
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

전기방사 나노섬유 에어필터의 정전기적 특성 및 에어로졸 여과특성 (Aerosol filtration and electrostatic properties of electrospun nanofiber air filters)

  • 박현설;임경수
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, Nylon 6,6 electrospun (ES) nanofiber filter media were prepared at various spinning conditions. The ES filters tested had no intrinsic electrical charges. The ES filters were triboelectrically charged in the course of filter sample handling, and the charge was drastically decayed in a few hours. On the other hand, the corona charged melt blown filter media showed a permanent electrical charge. The electrical charge state of the ES filters was also examined by comparing collection efficiencies of ES filters for uncharged and charged aerosol particles.

  • PDF

디지털 풍동을 활용한 풍력 발전기 날개 단면 형상 개발에 관한 연구 (A Study on the Development for the Airfoil of Wind Turbine Blade using Digital Wind Tunnel)

  • 강덕훈;우영진;이장호
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.42-47
    • /
    • 2012
  • Newly updated wing shape to apply small vertical wind turbine is tested with digital wind tunnel in this study. Digital wind tunnel is designed to reduce length of wind tunnel and also to maximize its area of test section. Same DC fans of ninety six are installed in the end side of its rectangular duct and air can be blown out to the other side to have uniform flow with same electricity power. New wing is concluded using experimental plan and analysis with 4-parameters and 3-levels, and tested with digital wind tunnel. It shows better performance in lift to drag ratio, and can applied to the wind turbine for the higher torque and lower thrust.

석탄과 반탄화 바이오매스 혼합연료의 가스화 (Gasification of Coal and Torrefied Biomass Mixture)

  • 오건웅;장진영;라호원;서명원;문태영;이재구;윤상준
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.190-199
    • /
    • 2017
  • Air-blown Gasification of coal and torrefied biomass mixture is conducted on fixed-bed gasifier. The various ratio (9:1, 8:2, 7:3) of coal and torrefied biomass mixture are used. The contents of $H_2$, CO in the syngas were increased with gasification temperature. Carbon conversion tend to increase with temperature and equivalence ratio (ER). However, cold gas efficiency showed maximum point in ER range of 0.26-0.36. The torrefied biomass showed highest cold gas efficiency of 67.5% at $934^{\circ}C$, ER 0.36. Gasification of 8:2 mixture showed the highest carbon conversion and cold gas efficiency and synergy effect.

탄소와 목재섬유 혼합물을 이용한 전자기파 차폐용 시트의 제조 (The Manufacturing of Electromagnetic Shielding Sheet Using the Carbon and Wood Fiber Mixture)

  • 김형진;엄기증
    • 펄프종이기술
    • /
    • 제38권4호
    • /
    • pp.68-75
    • /
    • 2006
  • Electromagnetic shielding sheet using the carbon and wood fiber mixture was manufactured in an effort to develop an electromagnetic shielding packaging material. Carbon fibers were cut into 5, 10, and 15 mm using the automatic cutting device and blown and dispersed using compression air passed through the fine nozzle. Then carbon fibers were slurried with water (0.1% consistency), and softwood kraft pulp along with cone starch were added. The wet mats were manufactured by dewatering in modified hand-sheet machine. The wet mats were pressed upto $4kgf/cm^2$ in the carbon and wood fiber mixture mat press. The wet mats were dried in the automatic controlled plate dryer. Investigation on the formation and surface structure of the newly developed carbon and wood fiber mixture electromagnetic shielding sheet were carried out using the scanning electron microscopy and the image analyzer. Finally electromagnetic shielding characteristics of the newly developed carbon and wood mixture sheet were measured using net-work analyser. The result was promising in the light of the fact that this method could open a new way to substitute the expensive imported electromagnetic shielding sheet.

멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구 (A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners)

  • 양동진;최신영;양원
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

전기방사를 이용한 탄소나노튜브 폴리머 공기정화 멤브레인 개발 (Development of Electrospun Cellulose Acetate Membranes using Carbon Nanotubes for Filtration of Particulate Matter in the Air)

  • 박소연;김재혁;한상일
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.68-73
    • /
    • 2017
  • 공기 중 분포하는 직경 $0.01{\mu}m{\sim}10{\mu}m$ 이하의 공기 중 미세입자는 섬유 층으로 구성된 멤브레인을 이용하여 제거될 수 있다. 전기 방사 기술, 용융방사, 용액방사, 겔 상태방사와 같은 필터 섬유 제조 기술 중 전기 방사 기술이 최근 가장 주목 받고 있으며, 다른 기술들에 비하여 수백 나노~수십 마이크로미터 정도의 균일한 직경의 섬유를 제조할 수 있다. 전기 방사 기술로 개방된 내부 구조, 넓은 다공성, 내부 표면적을 가지는 멤브레인을 제조할 수 있으므로, 전기 방사 멤브레인의 여과 성능이 눈에 띄는 향상을 보일 것으로 예상된다. 본 연구에서는 멤브레인 필터 섬유 두께, 밀도, 탄소나노튜브 첨가 등에 따른 분리 효율을 비교하였다. 분리 효율은 기공 크기가 작을수록, 섬유가 촘촘히 배열될수록 증가하였다.

나노섬유 필터의 개발 동향 (Development Trend of Nanofiber Filter)

  • 강인규;김영진;변홍식
    • 멤브레인
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2006
  • 나노섬유란 $1{\mu}m$ 이하의 섬유를 의미하며 멜트블로운(Melt blown), 복합방사, 분할방사, 전기방사 등의 방법으로 제조된다. 나노섬유는 초극세 섬유로서 섬유의 생성과 동시에 3차원의 네트워크로 융착되어 적층된 형태의 다공성 웹은 초박막, 초경량이며 기존 섬유에 비해 부피 대비 표면적비가 지극히 높고, 높은 기공도를 지니고 있다. 이러한 특성으로 인해 가스나 액체로부터 미세입자를 분리하는 고효율 초기능성 필터 소재로 활용될 수 있으며, 나노섬유로 구성된 필터는 여과 효율이 높고 공극율이 매우 높아 필터에서 발생하는 압력강하가 적다. 또한 공정의 적용이 용이하여 기존의 부직포 등의 소재에 코팅이 가능하므로, 나노섬유 필터는 기존 부직포 필터 시장의 대부분을 대체할 것으로 기대되어 진다. 본 총설에서는 나노섬유 필터의 연구개발 동향과 공업적 제조기술의 문제점 및 향후 시장성에 대해서 고찰하였다.

외기 중 미세먼지의 공동주택 실내 유입에 관한 연구 (Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings)

  • 방종일;조성민;성민기
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.