• Title/Summary/Keyword: air abrasion

Search Result 106, Processing Time 0.027 seconds

TREATMENT OF PRIMARY AND PERMANENT TEETH WITH THE AIR-ABRASIVE TECHNOLOGY (Air abrasion 기술을 이용한 유치 및 영구치의 수복)

  • Cho, Hyun;Lee, Kwang-Hee;Kim, Dae-Eop;Song, In-Kyung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.210-216
    • /
    • 2002
  • Air abrasion technology can prepare enamel and dentin for bonding, similar to etching by acidic gels and solutions. Longer treatment can excavate pit and fissures, preparing the tooth for immediate placement of bonded resin materials. Although not appropriate for every clinical situation, the air abrasive technology minimizes heat, vibration and bone-conducted noise associated with conventional means of caries removal since the cutting is accomplished by air pressure. Also, patients treated with the air-abrasion technology rarely request anesthesia. Air abrasion technology was more effective in treating early carious lesions and stains compared to lesions where caries had already progressed to produce soft dentin and the strong air stream and noise caused by the evacuation system was a major discomfort to pediatric patients, and the experience and skillfulness of clinician should be required for accurate and proper tooth preparation.

  • PDF

A STUDY ON MICROLEAKAGE OF PIT AND FISSURE SEALANT AFTER ENAMEL SURFACE TREATMENT (법랑질 표면처리방법에 따른 치면열구전색재의 미세누출에 관한 비교연구)

  • Hyun, Hong-Keun;Kim, Jung-Wook;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.512-521
    • /
    • 2001
  • Recently. the reintroduction of air-abrasion technology in dentistry has added a new potential method of pretreating teeth prior to placing sealants. The purpose of this in vitro study was to investigate microleakages of several pit and fissure sealants following various surface pre-treatment methods to the enamel, because there was a question concerning the validity of claim that this method was better than the conventional acid etching. Permanent molars were divided randomly into nine groups and treated accordingly: acid etching(group 1, 4, 7), air-abrasion(group 2, 5, 8), acid etching after air-abrasion(group 3, 6, 9). Then the authors placed and cured the three kinds of sealants(group $1\sim3$: Teethmate-F, group $4\sim6$: Ultraseal XT plus, group $7\sim9$: Denseal) according to the manufacturer's order. They were observed to determine the degree of microleakage. And these specimens were separated from the corresponding enamels and examined by Scanning Electron Microscope. The following results were obtained: 1. In comparing microleakage among tooth surface treatment methods, air-abrasion group(group 2, 5, 8) showed the greatest microleakage, while combination(air-abrasion + acid etching) group showed the least (p<0.05). However, no significant differences were found between group 7 and 9. 2. The mean microleakages were ranked as follows(p<0.05): In acid etching groups, group 7> group 4> group 1. In air-abrasive groups, group 8>groups 5> group 2. In combination groups, group 9>group 3> group 6. However, no significant differences were found between group 4 and 7 between group 2 and 5 and between group 3 and 6. 3. SEM showed that comparably longer resin tags were distributed regularly in acid etching groups and that shorter ones irregularly in air-abrasion groups. It also showed that these two kinds of tags were distributed simultaneously in combination groups.

  • PDF

Effect of Surface Treatments of on the Microtensile Bond Strength of Resin Composite to Composite after aging Conditions (시효처리 후의 컴포지트에 대한 레진 컴포지트의 미세 인장 결합강도에 표면처리가 미치는 효과)

  • Yoo, Min-Jin;Her, Mi-Ja;Kim, Hee-Lyang;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.339-347
    • /
    • 2010
  • Enhancement of bond strength between new and old composite usually requires increasing the surface roughness to promote mechanical interlocking. This study evaluated the effect of different surface treatments on repair bond strength of resin composite after aging condition. Air abrasion with Al2O3, chairside silicacoating, and silanization provided higher resin-resin bond strength values compared to control group and HF group. Air abrasion is necessary to repair a resin restoration and additional application of silane seems to have good effects on bond strength.

EFFECT OF SURFACE TREATMENTS ON THE REPAIR BOND STRENGTH OF COMPOSITES (복합레진의 수리 시 표면처리가 결합강도에 미치는 영향)

  • Choi, Jung-In;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taek
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.692-699
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength between new and old composite resin. The prepared resin specimens were separated 6 groups, and each group then received a different surface treatment. Then the repair material was added. Shear bond strengths for repair were measured after 7 days and the results were analyzed by using one way ANOVA. The results were as follows; 1. Group 3, 4(air abrasion) showed significantly higher shear bond strength than Group 1(phosphoric acid)(p<0.05). Group 5, 6(diamond bur) showed higher bond strength than Group 1(phosphoric acid) but not significantly different( p>0.05). 2. Group 2(self-etching adhesive) showed lower shear bond strength than Group 1(phosphoric acid) but not significantly different(p>0.05). 3. There was no statistically significant difference between Group 3(air abrasion) and Group 4(air abrasion+etching). 4. There was no statistically significant difference between Group 5(diamond bur) and Group 6(diamond bur+etching). In conclusion, the surface treatment with air abrasion resulted in higher repair bond strength than other methods. Repair bond strength was not significantly affected by acid etching.

  • PDF

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.

A STUDY ON MICROLEAKAGE OF COMPOSITE RESIN AFTER SURFACE TREATMENT (표면 처리방법에 따른 복합레진의 미세누출에 관한 실험적 연구)

  • Lee, Chang-Woo;Kim, Jung-Wook;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.103-115
    • /
    • 1998
  • Adhesion of composite resin to tooth structure has been of tremendous signgicance in clinical dentistry. Due to the lack of adhesion between composite restorative resins and enamel and dentin, microleakage occurs at the tooth/restoration interface. This may lead to discoloration, secondary caries, marginal breakdown, postoperative sensitivity, and even pulpal pathology. According to extensive use of composite resin, every effort on improving bonding strength and reducing microleakage between a tooth and composite resin has been continued. This study was conducted to determine the difference in microleakage in enamel and dentin treated with air-abrasion, acid etching and combination when restored with composite resin. Class V cavities were prepared on 30 premolars. The specimens were divided into following groups. group 1:air-abrasion+Scotchbond Multi-purpose group 4 :air-abrasion+All-Bond 2 group 2:acid etching+Scotchbond Multi-purpose group 5 :acid etching+All-Bond 2 group 3:combination+Scotchbond Multi-purpose group 6 :combination+All-Bond 2 #combination:air-abrasion + acid etching The specimens were filled with Z-100 after application of Scotchbond Multi-purpose and All-Bond 2. Thermocycling was conducted by alternately dipping the specimens in $5^{\circ}C$ and $55^{\circ}C$ water for 30 seconds 500 times. 1% methylene blue was applied and the specimens were left for 24 hours at $37^{\circ}C$. After washing out the dye, the tooth was sectioned buccolingually along the axis. The sectioned surface was observed with stereoscope for dye penetration. The author has measured the microleakage in teeth prepared with air-abrasion, acid ethching and combination to study the difference in microleakage following different methods of tooth surface treatment and has come to following results. 1. In comparing microleakage between groups, group 1 and 4 showed statistically significant difference from group 2, 3, 5 and 6(p<0.05). There was no significant difference among group 2, 3, 5, 6(p>0.05) nor between group 1 and 4(p>0.05). 2. In comparing microleakage among tooth surface treatment methods, Air-abrasion group showed significantly more microleakage than acid etching group and combination(airabrasion + acid etching) group(p<0.05). Combination(acid etching+air-abrasion)group tended to show lesser microleakage than acid etching group, but this was not statistically significant(p>0.05). 3. In comparing microleakage between bonding agents, there was no statistically significant difference between Scotch bond Multi-purpose and All-Bond 2(p>0.05).

  • PDF

Effect of Abrasion and Absorption on the Handle of Nonwovens for disposable diaper (기저귀용 부직포의 촉감에 미치는 마찰과 함수의 영향)

  • 홍경화;강태진;오경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.1
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, as the percentage of women employment has been growing, the demand for various facilities and services regarding household duties and infant rearing is increasing and so do the amount of the disposable diaper used. Among the components of disposable diaper, the top sheet contacting with infant skin directly is usually made with nonwoven textiles. Therefore, the mechanical and surface characteristics of the nonwovens used in disposable diaper are important for the skin health of infants. In this study, we have explored the mechanical and surface properties, such as friction coefficient, fluid permeability and strength, of the nonwovens used for disposable diaper top sheet and observed the variation of their properties with abrasion cycles. Nonwoven materials examined in this study are 100% cotton spunlace, 100% tencel spunlace, 100% polypropylene (PP) thermal bonding and 100% PP air through (Thru-air bonded carded web). From the result of KES-F analysis, we've found that 100% PP air through type nonwoven had a low friction coefficient and showed a little change in surface properties as increasing abrasion cycles. Moreover, it revealed superior fluid permeability and quick-drying character. On the other hand, though showing an excellent absorption force, the spun lace type nonwoven made of 100% cotton and 100% tencel displayed relatively low abrasion strength especially in wetting condition.

SHEAR BOND STRENGTH OF COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT (상아질 표면 처리 방법에 따른 Compomer의 전단 결합 강도)

  • 오영학;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this study was to evaluate the shear bond strength of compomers according to dentin surface treatment. Two materials of compomer were devided into six groups. The compomer used in this study were Dyract AP(D) and F2000(F), Group 1 (DN) and 4(FN) were treated according to manufacturers instructions as control groups. Group 2(DE) and 5(FE) were treated with 37% phosphoric acid and group 3(DA) and 6(FA) were treated with air abrasion unit (80 psi, 50 m aluminum oxide particles) respectively as experimental groups. After dentin surface treatment, compomers were bonded. Completed samples were stored in 100% humidity. 37C during 7 days, and then, the shear bond strength of specimens were evaluated. The results were as follows: 1. In the case of Dyract AP, the shear bond strength was showed the highest value of 9.10 MPa in dentin surface treatment with air abrasion unit. but there were no significant differences to the other groups. 2. In the case of F2000. the shear bond strength was showed the highest value of 13.51MPa and there were significant differences to the other groups(p<0.05). 3. The shear bond strength of F2000 was higher than Dyract AP in each dentin surface treatment. and in the case of etching and air abrasion. there were significant differences(p<0.05). 4. As a result of observation of SEM. the most of fracture pattern was adhesive failure in group 1(DN), 2(DE) and 4(FN), and cohesive failure in group 3(DA), S(FE) and 6(FA).

  • PDF

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

AN EXPERIMENTAL STUDY ON THE SHEAR BOND STRENGTHS OF COMPOSITE RESIN TO AIR-ABRADED ENAMEL AND DENTIN (표면처리방법에 따른 복합레진의 결합강도에 관한 실험적 연구)

  • Shin, Jae-Ho;Jang, Ki-Taeg;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.112-124
    • /
    • 1997
  • According to extensive use of composite resin which have superior esthetic property, every effort on improving bonding strength between a tooth and composite resin has been continued. Acid etching technique is a method that micro-etches the tooth surface which provides bonding with composite resin possible. Recently, there were several reports that mechanical treatment obtained from air-abrasion can provide similar bonding strength with acid etching technique. So, this experimental study was designed to compare the shear bonding strength between using air-abrasion technique and using acid etching technique. Initially, bovine teeth were divided into enamel and dentin experimental groups. Respectively each group was categorized into three subgroups. One subgroup was acid etched with 35% phosphoric acid, then bonded with composite resin. The other subgroup was air-abraded with $50{\mu}m$ $Al_2O_3$ particles sprayed with 160psi air pressure using air abrasion unit(KCP-1000, A.D.T., U.SA), and composite resin was bonded. In another subgroup, composite resin was bonded after acid etching following air-abrasion. So, enamel experimental groups were made of E1 (acid etched only), E2(air-abraded only), E3(acid etched following air-abraded), and dentin experimental groups were made of D1(acid etched only), D2(air-abraded only), D3(acid etched following air-abraded). Each subgroup had 10 specimens. Dentin bonding system(Scotchbond Multi-purpose, 3M Co., U.S.A.) and composite resin(Z-100, 3M Co., U.S.A.) were applied on treated surface using 5mm diameter gelatin capsule as manufacturer's direction. After 1200 times thermocycling between $5^{\circ}C$ and $55^{\circ}C$, shear bond strength was measured in 5mm/min crosshead speed with Instron(Instron Co., U.S.A.), and also treated enamel and dentin were observed with SEM(JEOL Co., Japan). The following results were obtained: 1. In the enamel experimental groups, acid etched following air-abraded group had highest shear bond strength, but there was no significant difference compared to acid etched group. Air-abraded only group had lowest shear bond strength, and there was significant difference compared to the rest of groups. 2. In the dentin experimental groups, acid etched following air-abraded group had highest shear bond strength, but there was no significant difference compared to acid etched group. Air-abraded only group had lowest shear bond strength, and there was significant difference compared to the rest of groups. 3. In the SEM study, air-abraded enamel and dentin had irregular and rough surfaces.

  • PDF