무선 센서 네트워크의 실시간 응용은 데이터 전송의 적시성이 보장되어야 한다. 제한적 멀티-홉 정보 기반의 라우팅 기법은 제한된 범위 내에서 멀티-홉 실시간 정보를 수집하고 데이터 전송 경로를 구성함으로써 실시간 데이터 전송 성공률을 높인다. 하지만 멀티-홉 정보가 점진적으로 수집되기 때문에 멀티-홉의 실시간 정보를 기반으로 한 데이터 전송 경로를 구성하기 위해서는 일정 수준의 초기화 시간이 필요하다. 따라서 발생 위치가 고정된 이벤트에서는 효과적이지만 이벤트가 연속적으로 이동한다면 단일 홉의 실시간 정보만 반영된 경로가 구성될 수 있기 때문에 이벤트 이동성을 효과적으로 지원할 수 없다. 본 논문에서는 리다이렉팅 기법을 활용한 라우팅 기법을 제안한다. 제안 기법은 이동한 이벤트를 감지한 새로운 노드에서 멀티-홉의 실시간 정보 수집이 완료된 지역의 노드로 데이터를 리다이렉팅함으로써 이벤트 이동성을 효과적으로 지원한다. 시뮬레이션 결과 제안된 방안이 기존 연구들과 비교하여 에너지 효율성 및 시간 내 전송 성공률 등이 우수함을 보인다.
This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.
최근 이질적인 분산 컴퓨팅 환경 상에서의 공동 작업들이 나날이 늘어나고 있다. 고속의 원거리 네트워크의 유용성 (availability)은 화상 회의, 분산된 대화식의 시뮬레이션, 그리고 공동의 시각화(collaborative visualization)와 같은 공동의 멀티미디어 응용들을 가능하게 하였다. 이와 같은 응용들과 분산된 고성능 컴퓨팅에서의, 효율적인 그룹 통신은 매우 중요하다. 일반적인 그룹 통신으로는 브로드캐스트, 멀티캐스트 등이 있다. 기존의 FEF, ECEF, look-ahead 와 같은 휴리스틱 알고리즘들은 이러한 이질적 분산 시스템에서의 브로드캐스트와 멀티캐스트를 위한 메시지 전송 트리를 구성하여 준다. 하지만 이러한 알고리즘들은 각 단계에서의 최적의 해를 선택하기 때문에 지역적 최적해(local optimum)에 빠질 수 있는 단점이 있다. 본 논문에서는 노드와 네트워크 모두가 이질적인 기존의 통신 모델 상에서 보다 효율적인 집합적 연산을 위한 트리를 구성해주는 개선된 브로드캐스트 알고리즘을 제안한다. 기존의 휴리스틱 알고리즘들이 지역적 최적해에 빠질 수 있는 점을 감안하여, 보다 합리적이고, 유용성 있는 edge 선택 기준을 제시하였다. 여러 가지 통신비용에 대한 성능 평가를 통하여, 개선된 휴리스틱 알고리즘은 기존의 알고리즘보다 적은 완료 시간을 가지며, 특히 look-ahead 알고리즘보다 낮은 계산 복잡도를 가지는 장점을 가짐을 알 수 있다.
This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.
자바는 이식성과 보안의 장점으로 인하여 내장형 시스템에서 널리 사용되고 있으나 인터프리터를 통한 바이트코드의 수행으로 인하여 성능이 저하되는 문제를 포함하고 있다. 이를 해결하기 위한 한 방법으로 수행시간 전에 바이트코드를 기계어 코드로 미리 번역하여 수행시간에는 기계어 코드가 수행되도록 하는 Ahead-of-Time 컴파일러 (AOTC)가 사용되고 있다. 특히 바이트코드를 C코드로 변환한 다음 기존의 컴파일러를 이용하여 기계어 코드를 생성하는 방식을 많이 택하고 있다. 본 논문에서는 AOTC에서 효율적인 예외처리 (exception handling) 기법을 제안한다. 기존의 AOTC 에서는 예외를 발생하는 메쏘드와 예외를 처리하는 메쏘드가 다른 경우 setjmp/longjmp를 이용하여 예외처리를 수행하고 있으나 우리는 메쏘드 호출 후의 예외 검사를 통해 예외처리를 수행한다. 우리는 제안된 예외처리 방법은 Sun의 CDC 가상 머신을 위해 개발된 AOTC 에 구현되었으며 SPECjvm98 벤치마크에서의 실험을 통해 setjmp/longjmp 방식에 비해 $1.3\%$에서 $154\%$까지의 성능향상이 가능함이 확인되었다.
Wind energy is rapidly becoming significant generating technologies in electricity markets. As probabilistic nature of wind energy creates many uncertainties in the short-term scheduling, additional actions for reliable market operation should be taken. This paper presents a novel approach to evaluate ramping capability requirement for changes in imbalance energy between day-ahead market and real-time market due to uncertainty of wind generation as well as system load. Dynamic ramp rate model has been applied for realistic solution in unit commitment problem, which is implemented in day-ahead market. Probabilistic optimal power flow has been used to verify ramping capability determined by the proposed method is reasonable in economic and reliable aspects. This approach was tested on six-bus system and IEEE 118-bus system with a wind farm. The results show that the proposed approach provides ramping capability information to meet both forecasted variability and desired confidence level of anticipated uncertainty.
As the real-time multimedia applications through Internet increase, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example meeting this necessity. The TCP-friendly (TFRC) is an UDP-based protocol that controls the transmission rate based on the available round transmission time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used for the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.
The utility of learning techniques in investment analysis has been demonstrated in many areas, ranging from forecasting individual stocks to entire market indexes. To date, however, the application of artificial intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast window is a single period ahead; if the input data involve daily observations, the forecast is for one day ahead; if monthly observations, then a month ahead; and so on. Thus far little work has been conducted on the efficacy of long-term prediction involving multiperiod forecasting. This paper examines the impact of alternative procedures for extended prediction using knowledge discovery techniques. One dimension in the study involves temporal granularity: a single jump from the present period to the end of the forecast window versus a web of short-term forecasts involving a sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a technical approach involving only lagged observations of the target variable versus a fundamental approach involving multiple variables. The dual possibilities along each of the granularity and numerosity dimensions entail a total of 4 models. These models are first evaluated using neural networks, then compared against a multi-input jump model using case based reasoning. The computational models are examined in the context of forecasting the S&P 500 index.
내장형 자바의 성능 향상을 위해 바이트코드를 기계어 코드로 미리 번역하여 내장형 시스템에 설치하는 Ahead-of-Time Compile(AOTC)가 많이 사용되고 있으나 수행 중에 동적으로 다운로드 되는 바이트코드를 수행하기 위해서는 기존의 해석기도 함께 사용되어야 한다. 이 경우 일부 자바 메소드는 AOTC에 의해 처리되고 일부 메소드는 해석기에 의해 수행되는 하이브리드 수행 환경이 된다. 이러한 환경에서 해석기 메소드가 AOTC 메소드를 호출하거나 AOTC 메소드가 해석기 메소드를 호출하는 경우 호출 오버헤드가 커서 성능을 저하시킬 수 가 있다. 본 연구에서는 AOTC에서 사용 가능한 두 가지 호출 인터페이스인 Java Native Interface(JNI)와 Compiled Native Interface(CNI)에 대해 하이브리드 수행 환경에서의 호출 오버헤드와 성능을 평가하고 각각의 장단점에 대해 논의한다. 그리고 두 호출 인터페이스의 장점을 살릴 수 있는 새로운 호출 인터페이스를 제안하고자 한다.
물고기 로봇 연구는 몸체 및 꼬리 관절 궤적의 크기나 주파수의 크기에 따른 로봇의 추력 비교 또는 꼬리 관절 궤적을 적절한 함수로 선정하여 물고기 로봇의 빠른 회전 등과 관련된 연구가 주를 이루고 있다. 본 연구에서는 물고기 로봇이 추력을 받아 앞으로 유영할 경우, 로봇의 몸체 및 꼬리 관절이 사인파와 같이 좌, 우로 요동치며 움직이므로 피드백 제어를 행하기 어렵다. 따라서 물고기 로봇의 경로에 기초한 가상의 위치를 검출하고, 검출된 위치를 사용하여 주어진 경로 위의 예견 점(look-ahead point)을 기준으로 방향 오차를 정의하여 물고기 로봇이 경로를 추종하도록 제어기를 설계하였다. 모의실험 결과 제안된 방법의 유용성을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.