• 제목/요약/키워드: agriculture reservoir

검색결과 198건 처리시간 0.025초

COMFARM을 이용한 농업용저수지 유역 수문 모델링 (Hydrologic Modeling for Agricultural Reservoir Watersheds Using the COMFARM)

  • 송정헌;박지훈;김계웅;류정훈;전상민;김진택;장태일;송인홍;강문성
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.71-80
    • /
    • 2016
  • The component-based modeling framework for agricultural water-resources management (COMFARM) is a user-friendly, highly interoperable, lightweight modeling framework that supports the development of watershed-specific domain components. The objective of this study was to evaluate the suitability of the COMFARM for the design and creation of a component-based modeling system of agricultural reservoir watersheds. A case study that focused on a particular modeling system was conducted on a watershed that includes the Daehwa and Dangwol serial irrigation reservoirs. The hydrologic modeling system for the study area was constructed with linkable components, including the modified Tank, an agricultural water supply and drainage model, and a reservoir water balance model. The model parameters were each calibrated for two years, based on observed reservoir water levels. The simulated results were in good agreement with the observed data. In addition, the applicability of the COMFARM was evaluated for regions where reservoir outflows, including not only spillway release but also return flow by irrigation water supply, substantially affect the downstream river discharge. The COMFARM could help to develop effective water-management measures by allowing the construction of a modeling system and evaluation of multiple operational scenarios customized for a specific watershed.

딥러닝 기법을 이용한 농업용저수지 CCTV 영상 기반의 수위계측 방법 개발 (Development of Methodology for Measuring Water Level in Agricultural Water Reservoir through Deep Learning anlaysis of CCTV Images)

  • 주동혁;이상현;최규훈;유승환;나라;김하영;오창조;윤광식
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.15-26
    • /
    • 2023
  • This study aimed to evaluate the performance of water level classification from CCTV images in agricultural facilities such as reservoirs. Recently, the CCTV system, widely used for facility monitor or disaster detection, can automatically detect and identify people and objects from the images by developing new technologies such as a deep learning system. Accordingly, we applied the ResNet-50 deep learning system based on Convolutional Neural Network and analyzed the water level of the agricultural reservoir from CCTV images obtained from TOMS (Total Operation Management System) of the Korea Rural Community Corporation. As a result, the accuracy of water level detection was improved by excluding night and rainfall CCTV images and applying measures. For example, the error rate significantly decreased from 24.39 % to 1.43 % in the Bakseok reservoir. We believe that the utilization of CCTVs should be further improved when calculating the amount of water supply and establishing a supply plan according to the integrated water management policy.

농업용 저수지 및 관개지구를 고려한 농업유역 물순환율 개발 (Development of Agricultural Water Circulation Rate Considering Agricultural Reservoir and Irrigation District)

  • 김석현;송정헌;황순호;김학관;강문성
    • 한국농공학회논문집
    • /
    • 제62권2호
    • /
    • pp.83-95
    • /
    • 2020
  • The water circulation in agricultural watersheds changes with the operation of agricultural reservoirs, it is necessary to classify and evaluate them into upstream, agricultural reservoirs, irrigation districts, and downstream. Therefore, in this study, we developed the agricultural water circulation rate (AWCR) considering an agricultural reservoir and irrigation district by improving the water circulation rate of the Water environmental conservation Act. we applied it to Jinwi watershed using the module-based hydrologic analysis system to simulate the water circulation for agricultural reservoirs and irrigation areas. The model performance during the validation period was NSE of 0.762 for the downstream stream and 0.682 for the reservoir level. And the hydrograph separation model was applied to separate the direct and baseflow. As a result of this study, The AWCR of Jinwi watershed was 71.8% on average, which was higher than the water circulation rate estimated by the downstream hydrograph separation.

대청호 상류유역의 기 개발된 유달부하량 산정식의 적용성 평가 (Evaluation of Application to Pre-Developed Delivery Load Equation at Upper Watershed of the Daechung Reservoir)

  • 이준배;김갑순;이규승;윤영삼;임병진;정재운
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2012
  • BACKGROUND: To improve the Daechung reservoir water quality, a quantitative estimation of the delivery load from upper watershed need to be conducted prior to others. To do so, an intensive monitoring is necessary because of the complexity and uncertainty of the delivery load from uppper watershed. However, intensive monitoring need to invest much time, cost, and effort. So, many researcher have developed an equation to estimate the delivery loads. But, relatively little research has been conducted on the applicability of pre-developed equation using other sites. Therefore, the objective of this study was to evaluate application of the equation for BOD, T-N and T-P delivery load. METHODS AND RESULTS: To verify the applicability of the equation, the following equation was used; Delivery loads(kg/day)=generated pollutant loads${\times}(1-{\alpha}){\times}$(daily outflow/${\beta})^{\gamma}$. The equations could be calculated the daily delivery loads of streams without any data of water quality, only with the data of daily runoff of study sites. The equations were applied to Youngdogcheon, Chogangcheon, Bocheongcheon, Sookcheon to examine its applicability using monitoring data. The results showed that the estimated delivery loads were in a good agreement with the observed data and indicated reasonable applicability of the equations. CONCLUSION(s): Overall, the equations were satisfactory in estimation of delivery loads at upper watershed of the Daechung reservoir. Therefore, the equations could be contributed to better water quality management in the Daechung reservoir.

SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석 (Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario)

  • 김지혜;곽지혜;황순호;전상민;이성학;이재남;강문성
    • 한국농공학회논문집
    • /
    • 제63권5호
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰 (A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir)

  • 정지연;정민혁;범진아;박민경;이재남;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가 (Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season)

  • 정형모;이상현;김경환;곽영철;최은혁;윤성은;나라;주동혁;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

현장계측에 의한 농업용저수지 제체의 안정관리기법 (Stability Evaluation Methods of Agricultural Reservoir by Field Monitoring)

  • 이달원;오범환
    • 농업과학연구
    • /
    • 제30권2호
    • /
    • pp.164-174
    • /
    • 2003
  • 본 연구는 연약지반상에 축조되는 농업용 저수지의 합리적인 안정관리의 기준을 수립하기 위하여 현장계측결과를 기초로 시공중 또는 완공후에 측방유동 등으로 인하여 국부적인 전단파괴 가능성을 현장계측치로부터 비교분석하여 다음과 같은 결론을 얻었다. 1. 한계평형법에 의해 안전율을 비교하면 Spencer방법과 간이 Bishop방법은 거의 유사하게 나타났고, 간이 Janbu 방법은 약간 작게 나타났다. Spencer방법은 흙의 활동부분에 대해 힘과 모멘트 두 평형방정식을 만족시키는 해석방법이므로 저수지의 안정성을 해석하는데는 합리적이라 판단된다. 2. 수평변위는 물리적 성질의 변곡점이 형성되는 부분에서 급증하였고, 성토의 안정관리는 각 토층의 경계부분에서 가장 불안정한 상태로 나타나므로 분석시 가장 우선적으로 검토하여야 한다. 3. 수평변위속도에 의한 안정성 평가방법은 파괴 가능성을 미리 예측하는데 상당히 효율적인 방법이라고 판단되고, 전단파괴 가능성이 높은 무처리 지반에서의 안전율의 기준은 처리지반보다도 신중하게 선정하여야 할 것으로 판단된다. 4. 점증하중에 의한 시공중 안정성을 계측자료를 이용하여 분석한 결과, 파괴기준선에 접근하여 위험가능성이 있는 부분도 있었으나 성토체는 안정한 것으로 확인되어 안정관리상 파괴기준선으로 안정성을 평가하는 것보다는 곡선의 기울기로 판단하는 것이 합리적이다.

  • PDF

농업용 저수지와 논 경작을 고려한 HSPF-MASA-CREAMS-PADDY 연계 시스템 개발 (Integrating the Mechanisms of Agricultural Reservoir and Paddy Cultivation to the HSPF-MASA-CREAMS-PADDY System)

  • 이도길;송정헌;류정훈;이재남;최순군;강문성
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.1-12
    • /
    • 2018
  • The objectives of this study were to develop a system linking hydrologic and water quality models considering the mechanisms of agricultural reservoir and paddy cultivation and to evaluate whether the developed system simulates hydrologic and water quality processes better than a hydrologic model that do not consider the mechanisms. The system consisted of Hydrological Simulation Program-Fortran (HSPF) as a watershed model, Module-based hydrologic Analysis System for Agricultural watersheds (MASA) as reservoir water balance model, and Chemical, Runoff and Erosion from Agricultural Management System-Paddy (CREAMS-PADDY) as a hydrologic and water quality model for paddy fields. This study carried out on the Seolseong-Cheon watershed in Icheon, and the water level and water quality had been monitored for two years at the outlet of the watershed. According to the results of this study, the performance of the simulation using HSPF-MASA-CREAMS-PADDY system was better than others, but they did not show a statistically significant difference. This seemed to be due to the uncertainty of the farming data and the water quality data of the reservoir. Therefore, if accurate input data for the system is obtained, HSPF-MASA-CREAMS-PADDY system could be used to model an agricultural watershed to obtain more realistic results. The results of this study could be utilized to the modeling of agricultural watersheds in Korea where paddy rice cultivation is dominant.

금강수계 소유역내 수질 변화 분석 -소하천을 대상으로- (A Study on Water Quality Changes of Geum River Subwatersheds: In Cases of Tributary)

  • 한아원;홍선화;황순홍;김동호;이준배;이영준
    • 한국환경농학회지
    • /
    • 제31권4호
    • /
    • pp.328-343
    • /
    • 2012
  • BACKGROUND: For effective subwatershed management, it is very important to select the tributaries for improving water quality and understand the characteristics of tributaries. Until now, however, the case study of main streams has been managed. 17 tributaries in Geum river subwatershed were monitored to regulate the source of water contaminations and identify their current situations in this study. METHODS AND RESULTS: As pollution indicators, such as biological oxygen demand($BOD_5$), chemical oxygen demand($COD_{Mn}$), suspended solid(SS), total nitrogen (T-N), total phosphate(T-P) and total organic carbon(TOC) in Geum river were examined from January to December in 2011. The results were as follows : The annual average concentration of nutrients in Yongdam reservoir upsteam was 0.7 mg/L for BOD, 3.0 mg/L for COD, 8.4 mg/L for SS, 2.905 mg/L for T-N, 0.035 mg/L for T-P and 1.6 mg/L for TOC. Water quality of Daechung reservoir upstream was mostly similar tendency in comparison to Yongdam reservoir upstream. Among the 22 tributaries, water quality in Daechung reservoir downstream was more polluted. T-N contents were significantly high in Miho B4 located Daechung reservoir downstream(annual average concentration: 13.53 mg/L). In cases of Miho A1, A2 and C1, pollution degree was worsened during rainy season expecially. CONCLUSION(S): For improving water quality of Geum river subwatershed, the tributaries in the Mihocheon area should be preferentially considered. Mihocheon tributary is the highest in pollution site, and thus a study on long-term effects should be research.