• Title/Summary/Keyword: agricultural pest

Search Result 492, Processing Time 0.03 seconds

The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse (스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Lee, Siyoung;Kim, Gookhwan;Lee, Meonghun;Hong, Young-ki;Kim, Hyunjong;Yu, Byeong-Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.318-325
    • /
    • 2019
  • Recently, research and development on agricultural robots have been on the rise as the interest in smart farming has increased. Robots used in smart greenhouses should be taken into account with the working characteristics and growing environment. This study examined cleaning robots developed through the environmental analysis of smart greenhouses. This study assessed the evaluation method considering the requirements of the pest control robot applicable to the smart greenhouse. The performance and quality assessment criteria were established to conduct tests through the requirements of robots. The required functions and goals of the pest control robot were derived by referring to the robot-related standards. A driving and working ability test was conducted to assess the performance of the robot. The driving test was conducted on the driving performance of the robot and the work capability was tested on the pest control performance. In addition, a durability test was conducted to assess the quality of the robot. The required factors for smart greenhouse robots were derived from the test results. The study results are expected be a standard for an evaluation of a variety of robots for applications to smart greenhouses.

Vulnerability Assessment of Rice Production by Main Disease and Pest of Rice Plant to Climate Change (기후변화에 따른 주요 벼 병해충에 의한 벼 생산의 취약성평가)

  • Kim, Myung-Hyun;Bang, Hea-Son;Na, Young-Eun;Kim, Miran;Oh, Young-Ju;Kang, Kee-Kyung;Cho, Kwang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.147-157
    • /
    • 2013
  • Rice is a main crop and rice field is the most important farmland in Korea. This study was conducted to propose the methodology assessing impact and vulnerability on rice production by climate change at the regional and national level in Korea. We evaluated a vulnerability of rice paddy according to the outbreak of a main disease and pest of a rice plant. As results, Jeju-do, Gyeongsangnam-do, and Jeollanam-do were more vulnerable area than others. In contrast, the southern central region including Gyeonggi-do was less vulnerable than others. The vulnerable index was significantly higher in 2050s (0.5589) than in present (0.3500). This result showed that the vulnerable to the disease and pest enlarge in the future. The adaptive capacity highly contributed to the vulnerability assessment index. The daily maximum temperature of June and the daily average temperature from May to August also contributed the climate exposure index. The area of occurring sheath blight, rice leaf blast and striped rice borer was related to the system sensitivity index. The ability of water supply (readjustment area of arable land per paddy field area) and rice production technique (rice yield per hectare) were the highly contributed variables to the adaption capacity index.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

Health Risk Assessment for Workers Exposed to Diazinon Insecticide (디아지논 취급 근로자의 건강 위험성 평가)

  • Jung, Woo Jin;Kim, Chi Nyon;Won, Jong Uk;Kim, Ki Youn;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Objectives: Diazinon is an insecticide which acts as a contact stomach and respiratory poison, and used throughout the world to control a wide range of sucking and chewing insects and mites on a range of crops. In this study, the airborne diazinon levels were measured for farmers, pest control operaters, landscapers, and agricultural chemicals sellers, and an assessment of the health risk to the workers was presented. The exposure scenario was based on the route of inhalation and skin absorption. The "OSHA Method No. 62" was used to sample and measure the airborne diazinon levels. The skin wipe method was applied to measure the level of the diazinone exposure through the skin. For the determination of exposure scenario, the exposure factors were surveyed for the daily average inhalation rate and the exposure period and frequency and time of diazinone as well as the body weight and lifetime of the workers. The median values of exposure frequency and exposure time were selected after evaluating the validity of those. Methods: The highest level of the diazinon exposure in the air was $107.21ug/m^3$ in farmers, followed by $93.53ug/m^3$ in landscapers, at $31.40ug/m^3$ in pest control operators, and $1.04ug/m^3$ in agricultural chemical seller. The amount of skin absorption was the highest in farmers at 63.39 ug/day, followed by landscapers at 10.47 ng/day, pest control operaters at 4.26 ng/day, and agricultural chemicals sellers at 0.34 ng/day. The hazardous indices calculated using toxicological reference value were 2.79 for pest control operaters, 0.41 for landscapers, 0.07 for agricultural chemicals sellers, and 0.06 for farmers. Conclusions: While the farmers were exposed to the high levels of diazinon through the air and skin, the pest control operaters, landscapers and agricultural chemicals sellers have more the diazinon hazards than the farmer based on the risk assessment in this study.

Influence of plant surface spray adhesion of dinotefuran and thiodicarb on control of apple leafminer

  • Kim, Young-Shin;Kim, Kwang-Soo;Jin, Na-Young;Yu, Yong-Man;Youn, Young-Nam;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.346-352
    • /
    • 2016
  • This study was conducted to obtain the correlation between the plant surface spray adhesion amount of pesticides and the pest control effect. The linearity of the standard curves of dinotefuran and thiodicarb was $R^2=0.9999$, and recovery was between 70% to 120% which was satisfactory for insecticide residue analyses. The pest control effect was evaluated by assessing the number of apple leafminers (Phyllonorycter ringoniella, Gracillariidae, Lepidoptera) captured by sex pheromone traps from late June to late September in 2015. For the adhesion amount, dinotefuran recovered from trap A and B, respectively were $47{\mu}g/50cm^2$ and $23{\mu}g/50cm^2$, which can be characterized as a very low adhesion amount in comparison to the average adhesion amount of $81{\mu}g/50cm^2$ in the field. In case of thiodicarb, $691{\mu}g/50cm^2$ and $71{\mu}g/50cm^2$ were recovered from trap A and B, respectively, and the average amount in the field is $325{\mu}g/50cm^2$. These results showed close correlation with the insect population captured by trap A and B. The numbers of insects captured by trap A and B between the end of July and late August were similar. After spraying thiodicarb on August 28, the number of apple leafminers captured by trap B is bigger than that of trap A. It appears that pest occurrence tended to be high at low adhesion amounts of the active ingredient. Therefore, in order to obtain an optimal control effect, it is suggested that uniform application of insecticides is critical instead of relying on the amount of insecticide applied in the field.

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.