• Title/Summary/Keyword: agricultural non-point sources

Search Result 66, Processing Time 0.036 seconds

Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test (계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석)

  • Yeom, Hojeong;An, Yongbin;Jung, Seyoon;Kim, Yoonseok;Kim, Bomchul;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

Properties of Water Quality and Land Use at the Rural Area in the Nakdong River Watershed (낙동강수계 농촌유역의 토지이용 및 수질 특성)

  • Kim, Jin-Ho;Kim, Chan-Yong;Lee, Seong-Tae;Choi, Chul-Mann;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • This study was focused on understanding the agricultural non-point sources pollution in 72 rural catchments of Nakdong river watershed from 2001 to 2005 every two year. Also. Pearson correlations between water quality and basin characteristic were computed. Water quality of this study watershed was better in 2003 than any other period. The water quality of upstream was recorded from 0.040 to 0.510 dS/m in EC, from 3.55 to 22.60 mg/L in DO, from 0.32 to 16.64 mg/L in T-N, from 0.00 to 12.21 mg/L in $NO_3-N$, from 0.000 to 0.860 mg/L in T-P, and from 0.000 to 0.640 mg/L in $PO_4-P$. A the downstream, EC was measured from 0.030 to 0.520 dS/m, DO from 4.13 to 18.36 mg/L, T-N from 0.38 to 26.88 mg/L, $NO_3-N$ from 0.10 to 20.12 mg/L, T-P from 0.002 to 0.820 mg/L, $PO_4-P$ from 0.002 to 0.690 mg/L. But there was no difference between upstream and downstream for the water quality. Based on the correlation analysis between water quality and land use, correlation between BOD and residential was the highest positive correlation of 0.541 (p<0.01), and correlation between $PO_4-P$ and forest was the highest negative correlation of -0.451 (p<0.01). Also, T-N, $NO_3-N$, and pH were not correlated with all basin characteristics and basin was not correlated with all water quality parameter. According to the correlation residential was causative of growing worst for water quality, and forest was causative of improving for water quality.

Trophic State and Water Quality Characteristics of Korean Agricultural Reservoirs (우리나라 농업용 저수지의 영양상태 및 수질특성)

  • Lee, Jae-Yon;Lee, Jae-Hoon;Shin, Kyung-Hoon;Hwang, Soon-Jin;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.223-233
    • /
    • 2007
  • For this study, we analyzed spatial and temporal patterns of trophic state and water quality over the period of $2002{\sim}2005$, using the water chemistry dataset obtained from the Korea Rural community & Agriculture corporation. Most reservoirs, based on TN, showed eutrophic (about 88% of the total). About 20% of agricultural reservoirs, based on TP, showed eutrophic after the criteria of OECD (1982), while 71% and 3% were Hesotrophic and oligotrophic, respectively. Seasonal variations were evident due to the intense monsoon rain during July${\sim}$August; conductivity, COD, SS, nutrients, and chlorophyll-${\alpha}$ (CBL) increased in the postmonsoon compared to the premonsoon. TP values had positive functional relations with conductivity, COD, and CHL values. COD and SS peaked during the intense monsoon. Mean values of TP and CHL values were two times greater in the intense monsoon than the weak monsoon. The increased TP was probably due to inorganic suspended solids from point and non-point sources during the monsoon. Ratios of TN : TP had strong in- verse relations ($R^2$=0.843, p<0.001, n=34) with TP, but not with TN (p>0.05, n=34). Log10-transformed CHL increased with TP in most P-limited reservoirs $(Log_{10}TP=0.5{\times}Log_{10}CHL+0.086)$. Similarity analysis, based TN, TP, and CHL showed that three groups were separated at 90% similarity level; One group was reservoirs with high salinity nearby the seawater, and the other two groups were reservoirs with a low salinity of the inland, and intermediate salinity, respectively.

Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System (금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Lee, In-Jung;Yu, Jae-Jeong;Cheon, Se-Uk;Kim, Kyo-Sik;Han, Kun-Yeun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

Characterization of Water Pollution Load in an Artificial Lake Irregularly Receiving River Water (유지용수 공급형 인공저수지의 수질오염부하 특성 연구)

  • Cho, Woong-Hyun;Jeong, Byung-Gon;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The first objective of this study was to investigate water pollution status of Meejae Reservoir, Kunsan, irregularly receiving river water for agricultural and recreational purposes. The second objective of the study was to compare nutrient pollution loads of three nutrient sources: sediment leaching, non-point sources and the receiving water. Water analysis results showed that eutrophication was a concern especially in summer and the calculated TSI (secchi depth), TSI (chlorophyll-a), and TSI (TP) were 53.6, 57.7 and 56.7, respectively. Although there was no significant difference in seasonal mean values of sediment T-N, sediment T-P and sediment organic content, mean differences were found for sampling points. However, T-N and T-P sediment release flux showed seasonal mean differences, while showing no mean difference for sampling points. Water T-N data proportionally correlated with sediment T-N and sediment organic content data, while no statistical correlation was found for water T-P data. Comparison of nutrient loads calculated from three sources showed that the highest T-N load was occurred from the receiving (pumped) water while T-P loads of the receiving water and sediment release flux were similar. The first solution would be considered for the receiving water to improve the water quality of Meejae Reservoir. Reduction of nutrient flux from the sediment would be then tried as the second alternative solution.

Assessment of Pollutant Loads in the Dongjin River (동진강 유역의 오염부하량 평가)

  • Lee, Kyeong-Bo;Kim, Jong-Cheon;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • This study was conducted to evaluate the influence of pollutant loads on the water quality in the Dongjin River area from January 2003 to December 2004. The average value of BOD and T-N showed the highest peak in Yongho, Dukcheon watershed among Dongjin River. Concentrations of BOD, T-N and T-P in Jeongeup watershed were 2.29 mg $L^{-1}$, 4.40 mg $L^{-1}$ and 0.27 mg $L^{-1}$, respectively. Concentration of BOD in Chilbo was 1.19 mg $L^{-1}$ which would be in the grade I according to water quality criteria by Ministry of Environment. The BOD level in Wonpeung and Sinpeung watershed ranged from 4.06 to 7.35 mg $L^{-1}$. The T-N effluent loads of non-point pollutants were high in Wonpeung, Gobu, Yongho Dukcheon, Jeongeup and Sinpeung watershed in order. The major sources of BOD, T-N and T-P effluent loads were Livestock. The T-P effluent load of non-point pollutant was 68 kg $day^{-1}$ in Wonpeung, 58 kg $day^{-1}$ in Yongho Dukcheon and 45 kg $day^{-1}$ Jeongeup watershed. The delivered loads of BOD was high in Gobucheon, while both T-N and T-P were high in Yongho Dukcheon. The delivery ratio of BOD and T-N at dry season was below 100% in all watershed of Dongjin River. The delivery ratio of T-N at raining season was high in Yongho Dukcheon and Chilbo watershed

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Improvement of Marine Environmental Impact Assessment for Golf Course Projects in Southern Coastal Area of Korea (남해연안 골프장조성에 따른 해양환경영향평가 개선방안)

  • Kim, Gui-Young;Lee, Dae-In;Yu, Jun;Eom, Ki-Hyuk;Jeon, Kyeong-Am
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.453-464
    • /
    • 2010
  • We evaluated the status and problems of golf course developments in the southern coast of Korea. It's adjacent waters supports nursery and fishing grounds for commercially-important fisheries species, and various sites are designated and protected as marine protection area(MPA), fisheries reserve, or clean area(blue belt) for producing shellfish. We proposed key assessment items for environmental impact assessment(EIA) and checklists in selecting golf course locations. For the protected areas, we suggest that it is essential to limit golf course establishment while setting a minimal distance from the coast to secure a buffer zone for mitigating the environmental impacts. To efficiently utilize existing regional coastal management plans, it is necessary to diagnose how a golf course development will potentially modify geomorphology and scenery, amplify pollutant loads from non-point sources, and disrupt the functions of coastal ecosystem. Especially, continued monitoring and assesssing input loads of hazardous materials originating from agricultural chemicals should be obligatory. Finally, measures for improving the QA/QC analysis were discussed to enhance reliability of environmental data with respect to golf courses and adjacent coastal waters.

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Analysis of Characteristics of NPS Runoff and Pollution Contribution Rate in Songya-stream Watershed (송야천 유역의 비점오염물질 유출 특성 및 오염기여율 분석)

  • Kang Taeseong;Yu Nayeong;Shin Minhwan;Lim Kyoungjae;Park Minji;Park Baekyung;Kim Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.316-328
    • /
    • 2023
  • In this study, the characteristics of nonpoint pollutant outflow and contribution rate of pollution in Songya-stream mainstream and tributaries were analyzed. Further, water pollution management and improvement measures for pollution-oriented rivers were proposed. An on-site investigation was conducted to determine the inflow of major pollutants into the basin, and it was found that pollutants generated from agricultural land and livestock facilities flowed into the river, resulting in a high concentration of turbid water. Based on the analysis results of the pollution load data calculated through actual measurement monitoring (flow and water quality) and the occurrence and emission load data calculated using the national pollution source survey data, the S3 and S6 were selected as the concerned pollution tributaries in the Songya-stream basin. Results of cluster analysis using Pearson correlation coefficient evaluation and Density based spatial clustering of applications with noise (DBSCAN) technique showed that the S3 and S6 were most consistent with the C2 cluster (a cluster of Songya-stream mainstream owned area) corresponding to the mainstream of Songya-stream. The analysis results of the major pollutants in the concerned pollution tributaries showed that livestock and land pollutants were the major pollutants. Consequently, optimal management techniques such as fertilizer management, water gate management in paddy, vegetated filter strip and livestock manure public treatment were proposed to reduce livestock and land pollutants.