• Title/Summary/Keyword: agricultural disease

Search Result 2,457, Processing Time 0.031 seconds

Isolation and identification of insect pathogenic fungus from silkworms with suspected white muscardine disease

  • Seul Ki Park;Chan Young Jeong;Hyeok Gyu Kwon;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Jong Woo Park
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • The value of silkworms as functional health food materials has increased, as has the interest in its disease control for stable production, and in the economic value of entomopathogenic microorganisms. In this study, we isolated and identified disease-causing fungi from white muscardine silkworms, and confirmed whether this strain could produce white muscardine silkworms. For the analysis of the cause of white muscardine disease in the infected silkworms, the fungi and prokaryotes causing the disease were identified, isolated, and identified using metagenome analysis. Metagenomic analysis detected a large amount of the fungus Metarhizium rileyi in silkworms, and a large amount of the bacterium Enterococcus mundtii, which was presumed to be the causative agent of the disease. For accurate identification of the fungi, these were purified by culture medium, and sequencing and phylogenetic tree analyses were performed using an internal transcribed spacer. As a result, M. rileyi, Cladosporium cladosporioides, and C. tenuissimum were identified. In general, M. rileyi is known to form green conidia, but in this study, white-yellow conidia were formed, indicating that the exact causative agent of the fungal disease cannot be estimated by diagnosing the symptoms. Thus, a diagnostic method is necessary for the continuously collection of required pathogens, and identifying their morphological and genetic characteristics.

Past and Future Epidemiological Perspectives and Integrated Management of Rice Bakanae in Korea

  • Soobin, Shin;Hyunjoo, Ryu;Yoon-Ju, Yoon;Jin-Yong, Jung;Gudam, Kwon;Nahyun, Lee;Na Hee, Kim;Rowoon, Lee;Jiseon, Oh;Minju, Baek;Yoon Soo, Choi;Jungho, Lee;Kwang-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • In the past, rice bakanae was considered an endemic disease that did not cause significant losses in Korea; however, the disease has recently become a serious threat due to climate change, changes in farming practices, and the emergence of fungicide-resistant strains. Since the bakanae outbreak in 2006, its incidence has gradually decreased due to the application of effective control measures such as hot water immersion methods and seed disinfectants. However, in 2013, a marked increase in bakanae incidence was observed, causing problems for rice farmers. Therefore, in this review, we present the potential risks from climate change based on an epidemiological understanding of the pathogen, host plant, and environment, which are the key elements influencing the incidence of bakanae. In addition, disease management options to reduce the disease pressure of bakanae below the economic threshold level are investigated, with a specific focus on resistant varieties, as well as chemical, biological, cultural, and physical control methods. Lastly, as more effective countermeasures to bakanae, we propose an integrated disease management option that combines different control methods, including advanced imaging technologies such as remote sensing. In this review, we revisit and examine bakanae, a traditional seed-borne fungal disease that has not gained considerable attention in the agricultural history of Korea. Based on the understanding of the present significance and anticipated risks of the disease, the findings of this study are expected to provide useful information for the establishment of an effective response strategy to bakanae in the era of climate change.

Escherichia coli-Derived Outer Membrane Vesicles Deliver Galactose-1-Phosphate Uridyltransferase and Yield Partial Protection against Actinobacillus pleuropneumoniae in Mice

  • Quan, Keji;Zhu, Zhuang;Cao, Sanjie;Zhang, Fei;Miao, Chang;Wen, Xintian;Huang, Xiaobo;Wen, Yiping;Wu, Rui;Yan, Qigui;Huang, Yong;Ma, Xiaoping;Han, Xinfeng;Zhao, Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2095-2105
    • /
    • 2018
  • In our previous studies, we have identified several in vivo-induced antigens and evaluated their potential as subunit vaccine candidates in a murine model, in which the recombinant protein GalT showed the most potent immunogenicity and immunoprotective efficacy against Actinobacillus pleuropneumoniae. To exploit a more efficient way of delivering GalT proteins, in this study, we employed the widely studied E. coli outer membrane vesicles (OMVs) as a platform to deliver GalT protein and performed the vaccine trial using the recombinant GalT-OMVs in the murine model. Results revealed that GalT-OMVs could elicit a highly-specific, IgG antibody titer that was comparable with the adjuvant GalT group. Significantly higher lymphocyte proliferation and cytokines secretion levels were observed in the GalT-OMVs group. 87.5% and 50% of mice were protected from a lethal dose challenge using A. pleuropneumoniae in active or passive immunization, respectively. Histopathologic and immunohistochemical analyses showed remarkably reduced pathological changes and infiltration of neutrophils in the lungs of mice immunized with GalT-OMVs after the challenge. Taken together, these findings confirm that OMVs can be used as a platform to deliver GalT protein and enhance its immunogenicity to induce both humoral and cellular immune responses in mice.

Studies on QTLs for Bakanae Disease Resistance with Populations Derived from Crosses between Korean japonica Rice Varieties

  • Dong-Kyung Yoon;Chaewon Lee;Kyeong-Seong Cheon;Yunji Shin;Hyoja Oh;Jeongho Baek;Song-Lim Kim;Young-Soon Cha;Kyung-Hwan Kim;Hyeonso Ji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.201-201
    • /
    • 2022
  • Rice bakanae disease is a serious global threat in major rice-cultivating regions worldwide causing high yield loss. It is caused by the fungal pathogen Fusarium fujikuroi. Varying degree of resistance or susceptibility to bakanae disease had been reported among Korean japonica rice varieties. We developed a modified in vitro bakanae disease bioassay method and tested 31 Korean japonica rice varieties. Nampyeong and Samgwang varieties showed highest resistance while 14 varieties including Junam and Hopum were highly susceptible with 100% mortality rate. We carried out mapping QTLs for bakanae disease resistance with four F2:F3 populations derived from the crosses between Korean japonica rice varieties. The Kompetitive Allele-Specific PCR (KASP) markers developed in our laboratory based on the SNPs detected in Korean japonica rice varieties were used in genotyping F2 plants in the populations. We found four major QTLs on chromosome 1, 4, 6, and 9 with LOD scores of 21.4, 6.9, 6.0, and 60.3, respectively. In addition, we are doing map-based cloning of the QTLs on chromosome 1 and 9 which were found with Junam/Nampyeong F2:F3 population and Junam/Samgwang F2:F3 population, respectively. These QTLs will be very useful in developing bakanae disease resistant high quality rice varieties.

  • PDF

Mulberry popcorn disease occurrence in Korea region and development of integrative control method

  • Ju, Wan-Taek;Kim, Hyun-Bok;Sung, Gyoo-Byung;Park, Kwang-Young;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.1
    • /
    • pp.36-40
    • /
    • 2016
  • Mulberry fruits also have tremendous potential for providing various valuable industrial products of very high economic value for human beings. Nevertheless, through global warming, the popcorn disease caused by sclerotia forming fungi reduces the productivity of mulberry fruits in worldwide. So, in this study, we investigated damage ratio of mulberry popcorn disease in mulberry fruit production farm (Buan, Jeongueb, Sangju, Gochang in Korea). In Jeonbuk Buan, popcorn disease rate was the highest about 30%, on the other hand, in case of Gyungbuk Sangju and Jeonbuk Gochang, not damage. Also, we investigated about popcorn disease prevention by various of chemical treatment methods.

Relation between Disease Incidence of Bacterial Grain Rot of Rice and Weather Conditions

  • Noh, Tae-Hwan;Kim, Hyung-Moo;Song, Wan-Yeob;Lee, Du-ku;Kang, Mi-Hyung;Shim, Hyeong-Kwon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.36-38
    • /
    • 2004
  • Bacterial grain rot of rice caused by Burkholderia glumae was examined between weather condition and disease incidence. From 1998 to 2000, average disease incidence was 3.0 % without difference in survey regions. However, it was related closely to amount of rainfall that disease incidence higher in 1998 and 2000 to 3.0 % and 3.6 % respectively than 2.3 in 1999 relatively small volum of rainfall season.

  • PDF

Chemical Management Strategies for Popcorn Disease and Mulberry Sucker on Fruit-Producing Mulberry (오디 생산용 뽕나무에 발생하는 균핵병과 뽕나무이의 약제 방제체계)

  • Choi, Min-Kyung;Kim, Ju-Hee;Jang, Su-Ji;Chon, Hyong-Gwon
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • From our field investigation from 2017 to 2018, five diseases and four insect pests have been identified as the primary biotic stressors of fruit-producing mulberry, which include popcorn disease and mulberry sucker, respectively. In this study, we examined the relative control effects of selected agro-chemicals against the popcorn disease and mulberry sucker. Our systemic treatment methods to simultaneously control the popcorn disease and the mulberry sucker indicated that an integrated control method showed a superior result with the control efficacy of 89.3%, while a conventional control method resulted in 66.7%. As a result, we concluded that it is much efficient to control both disease and insect pest in mid-April while sequentially applying chemicals only for the popcorn disease from February. By considering the ecological aspects of the popcorn disease and mulberry sucker, this systemic treatment will be able to reduce the labor of growers required for the control.

Establishment and application of a solid-phase blocking ELISA method for detection of antibodies against classical swine fever virus

  • Cao, Yuying;Yuan, Li;Yang, Shunli;Shang, Youjun;Yang, Bin;Jing, Zhizhong;Guo, Huichen;Yin, Shuanghui
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.32.1-32.11
    • /
    • 2022
  • Background: Classical swine fever (CSF) is a severe infectious disease of pigs that causes significant economic losses to the swine industry. Objectives: This study developed a solid-phase blocking enzyme-linked immunosorbent assay (spbELISA) method for the specific detection of antibodies against the CSF virus (CSFV) in porcine serum samples. Methods: A spbELISA method was developed based on the recombinant E2 expressed in Escherichia coli. The specificity of this established spbELISA method was evaluated using reference serum samples positive for antibodies against other common infectious diseases. The stability and sensitivity were evaluated using an accelerated thermostability test. Results: The spbELISA successfully detected the antibody levels in swine vaccinated with the C-strain of CSFV. In addition, the detection ability of spbELISA for CSFV antibodies was compared with that of other commercial ELISA kits and validated using an indirect immunofluorescence assay. The results suggested that the spbELISA provides an alternative, stable, and rapid serological detection method suitable for the large-scale screening of CSFV serum antibodies. Conclusions: The spbELISA has practical applications in assessing the vaccination status of large pig herds.

Stem Rot of Pearl Millet Prevalence, Symptomatology, Disease Cycle, Disease Rating Scale and Pathogen Characterization in Pearl Millet-Klebsiella Pathosystem

  • Vinod Kumar Malik;Pooja Sangwan;Manjeet Singh;Pavitra Kumari;Niharika Shoeran;Navjeet Ahalawat;Mukesh Kumar;Harsh Deep;Kamla Malik;Preety Verma;Pankaj Yadav;Sheetal Kumari;Aakash;Sambandh Dhal
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.

Effects of Seed-treatment Fungicides on Bakanae Disease of Rice

  • Park, Hyo-Won;Shim, Hong-Sik;Kim, Yong-Ki;Yeh, Wan-Hae;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.91.1-91
    • /
    • 2003
  • Bakanae disease, caused by Gibberella fujikuroi (anamorph Fusarium moniliforme J. Sheldon), a typical seed-borne disease of rice occurs from nursery to paddy fields. Consequently, chemical seed disinfectants is the most efficient control method. Several seed treatment methods with various fungicides were attempted to inhibit disease. Spray and 24 hrs immersion of seeds using prochloraz emulsion reduced disease infection and the control value were 99.3 and 100%, respectively. In contrast, dressing to wet seeds thiophanate-methyl+thiram wp and benomyl+thiram wp reduced disease infection more effectively than 24 hrs immersion of seeds. However, dressing of carpropamid+imidacloprid+fludioxonil wp to wet seeds did not reduced disease as well as wettable liquid of fludioxonil. The results suggest that the bakanae disease might be disinfected effectively by 24 hrs immersion of seeds in prochloraz emulsion and seed dressing of fungicides.

  • PDF