Browse > Article
http://dx.doi.org/10.4014/jmb.1809.09004

Escherichia coli-Derived Outer Membrane Vesicles Deliver Galactose-1-Phosphate Uridyltransferase and Yield Partial Protection against Actinobacillus pleuropneumoniae in Mice  

Quan, Keji (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Zhu, Zhuang (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Cao, Sanjie (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Zhang, Fei (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Miao, Chang (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Wen, Xintian (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Huang, Xiaobo (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Wen, Yiping (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Wu, Rui (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Yan, Qigui (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Huang, Yong (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Ma, Xiaoping (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Han, Xinfeng (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Zhao, Qin (Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2095-2105 More about this Journal
Abstract
In our previous studies, we have identified several in vivo-induced antigens and evaluated their potential as subunit vaccine candidates in a murine model, in which the recombinant protein GalT showed the most potent immunogenicity and immunoprotective efficacy against Actinobacillus pleuropneumoniae. To exploit a more efficient way of delivering GalT proteins, in this study, we employed the widely studied E. coli outer membrane vesicles (OMVs) as a platform to deliver GalT protein and performed the vaccine trial using the recombinant GalT-OMVs in the murine model. Results revealed that GalT-OMVs could elicit a highly-specific, IgG antibody titer that was comparable with the adjuvant GalT group. Significantly higher lymphocyte proliferation and cytokines secretion levels were observed in the GalT-OMVs group. 87.5% and 50% of mice were protected from a lethal dose challenge using A. pleuropneumoniae in active or passive immunization, respectively. Histopathologic and immunohistochemical analyses showed remarkably reduced pathological changes and infiltration of neutrophils in the lungs of mice immunized with GalT-OMVs after the challenge. Taken together, these findings confirm that OMVs can be used as a platform to deliver GalT protein and enhance its immunogenicity to induce both humoral and cellular immune responses in mice.
Keywords
Actinobacillus pleuropneumoniae; GalT protein; OMVs; immunoprotective efficacy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu Z, Zhao Q, Zhao Y, Zhang F, Wen X, Huang X, et al. 2017. Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae. Antonie van Leeuwenhoek 110: 1647-1657.   DOI
2 Sarkozi R, Makrai L, Fodor L. 2015. Identification of a proposed new serovar of Actinobacillus pleuropneumoniae: serovar 16. Acta Vet. Hung. 63: 444-450.   DOI
3 Bossee J, Li Y, Sarkozi R, Fodor L, Lacouture S, Gottschalk M, et al. 2018. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet. Microbiol. 217: 1-6.   DOI
4 Oldfield NJ, Donovan EA, Worrall KE, Wooldridge KG, Langford PR, Rycroft AN, et al. 2008. Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine 26: 1942-1954.   DOI
5 Chiang CH, Huang WF, Huang LP, Lin SF, Yang WJ. 2009. Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine 27: 4565-4570.   DOI
6 Lu YC, Li MC, Chen YM, Chu CY, Lin SF, Yang WJ. 2011. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Vaccine 29: 7740-7746.   DOI
7 Bei W , He Q , Zhou R, Yan L, H uang H, C hen H. 2007. Evaluation of immunogenicity and protective efficacy of Actinobacillus pleuropneumoniae HB04C(-) mutant lacking a drug resistance marker in the pigs. Vet. Microbiol. 125: 120-127.   DOI
8 Chen DJ, Langer R. 2010. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc. Natl. Acad. Sci. USA 107: 3099-3104.   DOI
9 Abbas AK, Lichtman AH, Pillai S. 2012. Basic Immunology, pp. 36-42. Ed. Saunders.
10 Stevenson TC, Cywesbentley C, Moeller TD, Weyant KB, Putnam D, Chang YF, et al. 2018. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc. Natl. Acad. Sci. USA 115: 201718341.
11 Fransen F, Stenger RM, Poelen MC, van Dijken HH, Kuipers B, Boog CJ, et al. 2010. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PLoS One 5: e15692.   DOI
12 Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, et al. 1991. Vaccine against g roup B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 14: 195-207.
13 Xu K, Zhao Q, Wen X, Wu R, Wen Y, Huang X, et al. 2018. A trivalent Apx-fusion protein delivered by E. coli o u ter membrane vesicles induce protection against Actinobacillus pleuropneumoniae of serotype 1 and 7 challenge in a murine model. PLoS One 13: e0191286.   DOI
14 Zhao K, Deng X, He C, Yue B, Wu M. 2013. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the toll-like receptor 4 signaling pathway. Infect. Immun. 81: 4509-4518.   DOI
15 Chen L, Valentine JL, Huang CJ, Endicott CE, Moeller TD, Rasmussen JA, et al. 2016. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 113: E3609-3618.   DOI
16 Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, et al. 2016. A TolC-like protein of Actinobacillus pleuropneumoniae is involved in antibiotic resistance and biofilm formation. Front. Microbiol. 7: 1618.
17 Bosse JT, Soares-Bazzolli DM, Li Y, Wren BW, Tucker AW, Maskell DJ, et al. 2014. The generation of successive unmarked mutations and chromosomal insertion of heterologous genes in Actinobacillus pleuropneumoniae using natural transformation. PLoS One 9: e111252.   DOI
18 Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184.   DOI
19 Asensio CJ, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, et al. 2011. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29: 1649-1656.   DOI
20 Schertzer JW, Whiteley M. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3: 203-216.
21 Mashburn-Warren LM, Whiteley M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61: 839-846.   DOI
22 Kuehn MJ, Kesty NC. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19: 2645-2655.   DOI
23 Lee EY, Choi DS, Kim KP, Yong SG. 2008. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 27: 535-555.   DOI
24 Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. 2014. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80: 3469-3483.   DOI
25 Yaron S, Kolling GL, Simon L, Matthews KR. 2000. Vesiclemediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66: 4414-4420.   DOI
26 Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945-5957.   DOI
27 van der Pol L, Stork M, van der Ley P. 2015. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 10: 1689-1706.   DOI
28 Sandbu S, Feiring B, Oster P, Helland OS, Bakke HSW, Næss LM, et al. 2007. Immunogenicity and safety of a combination of two serogroup B meningococcal outer membrane vesicle vaccines. Clin. Vaccine Immunol. 14: 1062-1069.   DOI
29 Cuccui J, Terra VS, Bosse JT, Naegeli A, Abouelhadid S, Li Y, et al. 2017. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required f or adhesion and has potential use in glycoengineering. Open Biol. 7.
30 Kleijn EDD, Groot RD, Labadie J, Lafeber AB, Dobbelsteen GVD, Alphen LV, et al. 2000. Immunogenicity and safety of a hexavalent meningococcal outer-membrane-vesicle vaccine in children of 2-3 and 7-8 years of age. Vaccine 18: 1456-1466.   DOI
31 Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. 2003. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115: 25-35.   DOI
32 Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, Delisa MP, et al. 2016. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 34: 1252-1258.   DOI
33 Huang W, Wang S, Yao Y, Xia Y, Yang X, Li K, et al. 2016. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection. Sci. Rep. 6: 37242.   DOI
34 Zhang F , Cao S, Z hu Z, Yang Y , Wen X , Chang YF, et al. 2016. Immunoprotective efficacy of six in vivo-induced antigens against Actinobacillus pleuropneumoniae as potential vaccine candidates in murine model. Front. Microbiol. 7: 728-732.
35 Fu S, Zhang M, Xu J, Ou J, Wang Y, Liu H, et al. 2012. Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins. Vaccine 31: 347-353.
36 Schwechheimer C, Kuehn MJ. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13: 605-619.   DOI
37 Ellis TN, Kuehn MJ. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74: 81-94.   DOI
38 Zhang F, Zhang Y, Wen X, Huang X, Wen Y, Wu R, et al. 2015. Identification of Actinobacillus pleuropneumoniae genes preferentially expressed during infection using in vivoinduced antigen technology (IVIAT). J. Microbiol. Biotechnol. 25: 1606-1613.   DOI
39 Zhang F, Zhao Q, Quan K, Zhu Z, Yang Y, Wen X, et al. 2018. Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 13: e0198207.   DOI
40 Kim JY, Doody AM, Chen DJ, Cremona GH, Putnam D, Delisa MP. 2008. Engineered bacterial outer membrane vesicles with enhanced functionality. J. Mol. Biol. 380: 51-66.   DOI
41 Li M, Song S, Yang D, Li C, Li G. 2015. Identification of secreted proteins as novel antigenic vaccine candidates of Haemophilus parasuis serovar 5. Vaccine 33: 1695-1701.   DOI
42 Oh Y, Ha Y, Han K, Seo HW, Kang I, Park C, et al. 2013. Expression of leucocyte function-associated antigen-1 and intercellular adhesion molecule-1 in the lungs of pigs infected with Actinobacillus pleuropneumoniae. J. Comp. Pathol. 148: 259-265.   DOI
43 Bachmann MF, Jennings GT. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10: 787-796.   DOI
44 Mccaig WD, Loving CL, Hughes HR, Brockmeier SL. 2016. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis. PLoS One 11: e0149132.   DOI
45 Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, et al. 2009. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim. Biophys. Acta 1788: 2150-2159.   DOI