• Title/Summary/Keyword: agricultural automation

Search Result 171, Processing Time 0.036 seconds

Current status and future trends for pork production in the United States of America and Canada

  • M. Todd See
    • Animal Bioscience
    • /
    • v.37 no.4_spc
    • /
    • pp.775-785
    • /
    • 2024
  • Pork production is a significant agricultural enterprise in the United States and Canada. The United States is the third-largest global producer of pork and Canada ranks seventh in pork production. The North American Free Trade Agreement and its successor, the U.S.-Mexico-Canada Agreement, have facilitated trade and integration between the two countries. The majority of production systems are modern and intensive, characterized by large vertically integrated farms using advanced technologies. Both nations benefit from their status as major producers of feed grains, with the United States leading in corn and soybeans, while Canada excels in canola and barley production. The regulatory frameworks for food safety, animal welfare, and environmental stewardship differ slightly, with the FDA and USDA overseeing these aspects in the United States, and Health Canada and the Canada Food Inspection Agency in Canada. The United States and Canada also have well-established distribution networks for pork products, relying on both domestic and international markets. Export markets play a crucial role, with the United States being a major importer of Canadian pigs, and both countries exploring opportunities in Asia. Despite a rise in global demand, domestic pork consumption trends differ, with per capita consumption remaining stable in the USA and declining in Canada. Changing consumer preferences, including a demand for ethically raised and locally sourced pork, may influence production practices. Future trends in pig production include a focus on consumer concerns, sustainability, disease prevention, reduction of antimicrobial use, and advancements in technology. The industry is adapting to challenges such as disease outbreaks and changing regulations, with a strong emphasis on animal welfare. Labor and workforce considerations, along with advancements in technology and automation, are expected to shape the efficiency of pork production in the future.

Analysis of Contributing Factor for Cation Ratio to Calcium in Nutrient Solution on the Incidence of Blossom-end Rot in Sweet Pepper 'RZ208' Grown in Hydroponics (파프리카 배꼽썩음과 발생에 미치는 배양액 내 칼슘에 대한 양이온 기여인자 분석)

  • Lee, Hye-Jin;Oh, Jeong-Sim;Choi, Ki-Young;Lee, Yong-Beom;Bae, Jong-Hyang;Rhee, Han-Cheol;Kim, Dong-Eok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study aimed to investigate the responses of plant growth and blossom-end rot (BER) incidence to calcium (Ca) and its three kinds of antagonistic cations (K, Mg, and $NH_4$-N) with various ratios in nutrient solution for sweet paper (Capsicum annuum L. 'RZ208'). Both Ca to each cation and Ca to a series of cation combinations, such as potassium (K), ammonium nitrate ($NH_4$), or magnesium (Mg) were more influential to the fruit growth and quality than plant growth. Especially, the BER incidence was significantly influenced by the ratio treatments. For examples, when Ca:(K + Mg) or Ca:(K + Mg + $NH_4$) ratio was 1:2 the highest incident rate of BER about 70.3 or 86.3% was observed, lowering the marketable yield to 19 or 13.7% of the total yield, respectively. The correlation coefficiencies (= r) to relationships between the BER and K as well as BER and $NH_4$ were 0.82 (P < 0.05) and 0.65 (P < 0.05), respectively. Combination only with the Mg element was not correlated with the BER incidence. However, when both of the K and Mg concentrations were 0.65 (P < 0.05). The highest correlation coefficiency, 0.92 (P < 0.05), was found to a relationship between the BER and the tree elemental combination.

Interface of Tele-Task Operation for Automated Cultivation of Watermelon in Greenhouse

  • Kim, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.511-516
    • /
    • 2003
  • Computer vision technology has been utilized as one of the most powerful tools to automate various agricultural operations. Though it has demonstrated successful results in various applications, the current status of technology is still for behind the human's capability typically for the unstructured and variable task environment. In this paper, a man-machine interactive hybrid decision-making system which utilized a concept of tole-operation was proposed to overcome limitations of computer image processing and cognitive capability. Tasks of greenhouse watermelon cultivation such as pruning, watering, pesticide application, and harvest require identification of target object. Identifying water-melons including position data from the field image is very difficult because of the ambiguity among stems, leaves, shades. and fruits, especially when watermelon is covered partly by leaves or stems. Watermelon identification from the cultivation field image transmitted by wireless was selected to realize the proposed concept. The system was designed such that operator(farmer), computer, and machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. And the developed system was composed of the image monitoring and task control module, wireless remote image acquisition and data transmission module, and man-machine interface module. Once task was selected from the task control and monitoring module, the analog signal of the color image of the field was captured and transmitted to the host computer using R.F. module by wireless. Operator communicated with computer through touch screen interface. And then a sequence of algorithms to identify the location and size of the watermelon was performed based on the local image processing. And the system showed practical and feasible way of automation for the volatile bio-production process.

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

Estimation of Optimum Period for Spring Cultivation of 'Chunkwang' Chinese Cabbage Based on Growing Degree Days in Korea (생육도일(GDDs)에 따른 '춘광' 봄배추의 적정 재배 작기 예측)

  • Wi, Seung Hwan;Song, Eun Young;Oh, Soon Ja;Son, In Chang;Lee, Sang Gyu;Lee, Hee Ju;Mun, Boheum;Cho, Young Yeol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • Knowledge of the optimum cultivation period for Chinese cabbage would help growers especially in spring in Korea. Growth and yield of Chinese cabbage in a temperature gradient chamber was evaluated for the growing periods of 64 days from three set of transplanting dates including March 6, March 20, and April 3 in 2017. Air temperature in the chamber was elevated step-by-step, by $2^{\circ}C$ above the ambient temperature. This increment was divided into three phases; i.e. low (ambient+$2^{\circ}C$, A), medium (ambient+$4^{\circ}C$, B), and high temperature (ambient+$6^{\circ}C$, C). The fresh weight of Chinese cabbage was greater under B and C conditions in the first period and A in the second period, which indicated that GDDs affected the fresh weight considerably. However, leaf growth (number, area, length, and width) did not differ by GDDs. Bolting appeared under A condition in the first period, which was caused by low temperature in the early growth stage. Soft rot was developed under C condition in the second period and all temperature conditions in the third period, which resulted from high temperature in the late stage. Fresh weight increased when GDDs ranged from 587 to 729. However, it decreased when GDDs > 729. The maximum expected yield (16.3 MT/10a) was attained for the growing period of 64 days from transplanting date during which GDDs reached 601. The GDDs for optimum cultivation ranged from 478-724 under which the yield was about 95% (15.5 MT/10a) of maximum fresh weight. Such an optimum condition for GDDs was validated at five main cultivation regions including Jindo, Haenam, Naju, Seosan, and Pyeongtaek in Korea. In these regions, GDDs ranged from 619-719. This suggested that the optimum GDDs for Chinese cabbage cultivation would range from 478-724, which would give the useful information to expect the cultivation periods for ensuring maximum yield.

The impact of cement industry on regional change (시멘트공업이 지역에 미친 영향)

  • ;Chin, Yong-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.1
    • /
    • pp.16-34
    • /
    • 1995
  • This study aims to analyze the impact of cement industry on region change. For this study Maepo-Eub was selected as study area, where three cement factories are located. The data for analysis were obtained from interviews, questionaire surveys and the employee list of each cement factory. The analytic procedures for this study are as follows: 1) The change of regional employment was analyzed by development was industry in terms of the permanent address, education level, occupational status of the employee. 2) The degree of population growth are analyzed by developmental staae of the industry. Some conclusions from this study follows: 1) As these cement factories were built at Maepo in the 1960's, there were plenty of employment opportunities. Thus many technicians and workers flooded in Maepo-Eub. in the 1970's with the expansion of production facilities therewere much more immigrants to the industrial region, while there were outflow in the neighboring rural areas. In the 1980's the opportunity for the employment of cement factories have been decreased due to the introduction of the automation processes and larger, sized machines. Among the employee of three cement factories the native of Chungcheongbukdo (65%; in them Danyang 52%, Jecheon 32%) is dominant, the second is from Kangwon-do (13%), and the third is from Kyungsangbuk-do (11%) adjacent to Chungcheongbuk-do. It means that there are more employment opportunity in the near places of cement factories. 2) In the period of 1960's study area had experineed rapid social increase in population by the development of cement industry. That is, cement industries created new job opportunities and attracted large population concentration into this area. In the period of 1970's the population of the industrial region have increased continuously, while the population of neighboring rural areas have decreased. In the period of 1980's the population of Maepo decreased steadily because of decrease of labour forces through automation and commuting. Thus in the early stage of idustrial development large population concentrated in the neighboring villages of cement factories, and formed residential areas, commercial areas and service areas. As agricultural and was encroached, rural people left their regions to live in the more convenient suburbs. 3) People engaged in cement industry think that cement industry has a favorable influence on regional development, such as creating job opportunity, raising income level, developing business and service sector, and leading high economic growth. While farmers and some people think that cement industries as a pollution causing factories have a harmful influence on regional development, sucha as injuring the crops, causing environmental pollution, and being harmful to health. If pollution problems are solved, I think Maepo will play an important role as a regional center which can offer employment opportunity, business and service function to pheripheral rural areas, and raise a income level.

  • PDF

A Study on Design and Operational Factors of Rice Whitening Systems Consisting of Abrasive and Frictional Whiteners -Operational Criteria- (조합식(組合式) 정백(精白)시스템의 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究)(II) -작동기준(作動基準) 설정(設定)-)

  • Noh, S.H.;Koh, H.K.;Lee, J.W.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.28-37
    • /
    • 1987
  • Operation of rice whiteners has been depending on operator's experience only and very limitted data are available for operational criteria of rice whiteners in Korea. With developments of new rice varieties and with a tendency of automation of machine operations for precision control, operational criteria depending on physical characteristics of rice grains arc required for an improvement of milled rice recovery and the performance of rice whitening systems. An experimental study was conducted to identify operational criteria of a rice whitening system consisted with an abrasive-aerated whitener developed newly and a frictional-aerated whitener being used commercially. Further, comparisons were made between the performance of the rice whitening system adopted for this study and a commercial system used in small scale milling plants. Results of this study are summarized as follows: 1. Total number of passes necessary for the final white rice in the combined whitening system depended exclusively on the counter pressure level of the frictional whitener successive to the abrasive whitener. 2. The counter pressure required for whitening Japonica type rice variety (Akibare) was higher by about 1.6 times than that for Japonica type (Pung-san), when other conditions were kept at the same. 3. Radial pressure in the whitening chamber of the frictional whitener should be maintained between 1.5 to $2.1kg/cm^2$ for the completion of whitening within 5 to 3 passes regardless of rice varieties. Hence, it was found that the radial pressure in the whitening chamber could be used as an operational criteria to control the counter pressure level. 4. The following regression equation was found between radial pressure($R_p$) in whitening chamber and electric power consumption of the whitening system: $$EPC=-0.545\;R^2_p+1.277\;R_p+0.874[KWH/100kg]$$ 5. The following multiple regression equation was found among radial pressure ($R_p$), counter pressure ($C_p$), and bioyield point ($B_i$), length (L) and width (W) of brown rice. $$R_p/(B_i/W^2)=0.547\{C_p/(B_i/W^2)\}^{0.365}(L/W)^{0.120}(R^2=0.9897)$$ 6. The milled rice recovery and machine efficiency (kg/KWH) from the combined whitening system were higher by about 2.0% point and by 15 to 27% point than those from the conventional system, respectively.

  • PDF

Fruit price prediction study using artificial intelligence (인공지능을 이용한 과일 가격 예측 모델 연구)

  • Im, Jin-mo;Kim, Weol-Youg;Byoun, Woo-Jin;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • One of the hottest issues in our 21st century is AI. Just as the automation of manual labor has been achieved through the Industrial Revolution in the agricultural society, the intelligence information society has come through the SW Revolution in the information society. With the advent of Google 'Alpha Go', the computer has learned and predicted its own machine learning, and now the time has come for the computer to surpass the human, even to the world of Baduk, in other words, the computer. Machine learning ML (machine learning) is a field of artificial intelligence. Machine learning ML (machine learning) is a field of artificial intelligence, which means that AI technology is developed to allow the computer to learn by itself. The time has come when computers are beyond human beings. Many companies use machine learning, for example, to keep learning images on Facebook, and then telling them who they are. We also used a neural network to build an efficient energy usage model for Google's data center optimization. As another example, Microsoft's real-time interpretation model is a more sophisticated translation model as the language-related input data increases through translation learning. As machine learning has been increasingly used in many fields, we have to jump into the AI industry to move forward in our 21st century society.