• Title/Summary/Keyword: aggregate structures

Search Result 347, Processing Time 0.026 seconds

Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate (비세척된 재생 조골재 콘크리트의 강도특성)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate (재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Experimental Study on Assumption of Compressive Strength of Recycled Aggregate Concrete by Nondestructive Test to Practical Building (재생골재 콘크리트 실구조물의 비파괴 시험에 의한 압축강도 추정에 관한 실험적 연구)

  • Song, Young-Chan;Shim, Jong-Woo;Jun, Myoung-Hoon;Lee, Sea-Hyun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.125-128
    • /
    • 2006
  • As the ministry of construction and transportation established quality standards for recycled aggregate in August, 2005, the consumption of recycled aggregates is expected to be increased in construction fields in the future. Thus the relations between compressive strength of general concretes and that of recycled aggregate concretes which are applied to actual structures are attempted to investigate through non-destruction testing method. Presently Schmitt-Hammer test method is that concrete compressive strength is predicted by measuring surface hardness of concretes, and is well known as the most convenient and simply operated method among many non-destruction testing methods. In this study, cylinder specimen and mock-up were constructed using recycled aggregate concretes made by the first class recycled coarse aggregates and recycled fine aggregates specified in KS F 2573 (recycled aggregate for concrete), and compressive strength of hardened concrete of middle ages was evaluated.

  • PDF

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

A Bayesian Analysis of Structural Changes in Aggregate Demand and Supply of Korean Economy (한국경제의 총수요와 총공급에서의 베이지안 구조변화 분석)

  • Jun, Duk-Bin;Park, Dae-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.475-483
    • /
    • 1998
  • Structural changes in an economy system bring about serious problems in establishing economic policies. The boom of middle-east export, the oil shock, and the recent dollar crisis in Korean economy are such examples. Hence, it is necessary to identify and estimate those structural changes. This study focuses on an output and price and analyzes structural changes in aggregate demand and supply. The aggregate demand and supply structures are described by conventional dynamic simultaneous equations model, where each structural change is represented by dummy variables and estimated by the proposed Bayesian method. By applying this model to Korean output and price, structural changes in the aggregate demand and supply are analyzed.

  • PDF

Evaluation of Impurity Content Criteria of Recycled Aggregate for Lean Concrete Base (빈배합 콘크리트 기층용 순환골재의 이물질 품질기준 적정성 연구)

  • Kim, Nam-Ho;Yang, Seung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • A recent shortage in Korean aggregate market leads a social demand to utilize recycled aggregate to more advanced level, such as the use in concrete structures or paving materials for surface and base layers. Government announced a recycled aggregate guideline in 2009 to provide an institutional framework for recycled aggregate in such an up-scaled use. The use of recycled aggregate in such use; however, is very minimal. This paper evaluates the validity of the impurity content criteria of recycled aggregate for lean concrete base through a series of material tests. The analysis results shows that reclaimed asphalt pavement (RAP) in recycled aggregate not only influence a strength lean concrete adversely, but also influence negatively on an absorption and abrasion characteristics of aggregate system significantly that made those two indices lower. Since absorption and abrasion characteristics are very important indices for recycled aggregate quality, RAP in recycled aggregate could significantly mislead the recycled aggregate qualification. This paper provides a suggestion to resolve these problems.

Bacterial Community of Free-living and Aggregated Bacteria at Thawing Period in Lake Baikal (해빙기 바이칼호에서 부유세균과 Aggregates에 부착한 세균의 군집구조)

  • 홍선희;김옥선;전선옥;유재준;안태석
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.192-197
    • /
    • 2002
  • Fluorescent in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes was used to compare the community structures of free-living and aggregated bacteria at thawing period in Lake Baikal. Targeted groups were Eubacteria, $\alpha$-, $\beta$-, $\gamma$- proteobacteria groups, Cytophaga-Flavobacterium group and Planctomycetales. Total bacterial numbers of free-living bacteria were ranged from $0.2{\times}10^6\cells{\cdot}ml^-1$ to $3.2{\times}10^6\cells{\cdot}ml^-1$, which were decreasing with depth, while the aggregated bacterial numbers were dramatically increasing from $0.4{\times}10^4 to 3.3{\times}10^4 \cells{\cdot}ml^-1$ with depth. The ratios of EUB probe binding cells to DAPI counts were ranged from 52.3 to 74.1% in free-living bacteria, and from 39.6 to 66.7% in the aggregated bacteria, respectively. Community structures of the aggregated bacteria were very different from each free-living bacteria at every depth. At 25 m depth, where the chlorophyll a concentration was highest, both structures were quite different from those of surface layers, rendering the fact that the community structures might be affected by phytoplankton. The vertical profile of community structure of aggregated bacteria is particular. The proportion of $\beta$-proteobacteria group was increasing with depth and it was 51.8% at 100 m, but the dominant group was $\gamma$-pro-teobacteria group at 250 m. Taken together, the biodiversity and succession of aggregated bacteria are quite different from free-living bacteria.

An Experimental Study on the Behavior of Reinforced Concrete Beams using Recycled Coarse Aggregate (재생 굵은골재를 사용한 철근 콘크리트 보의 거동에 관한 실험연구)

  • Lee, Myeong-Gyu;Kim, Gwang-Seo;Lee, Geun-Ho;Yun, Geon-Ho;Jeong, Sang-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.133-141
    • /
    • 2004
  • The object of this study is to investigate experimentally the shear behavior of reinforced concrete beams using recycled coarse aggregate. At first, the specimens are manufactured for the compressive strength of 210kgf/$\textrm{cm}^2$ with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, 100%, respectively. From the results, Reinforced concrete beams using recycled coarse aggregate were made with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, with stirrups and recycled coarse aggregate ratio of 0%, 20%, 40% without stirrups. The results of crack pattern and failure mode, load-displacement curve(center point and load point) and load-steel curve(compressive, tensile, stirrup) were analysed. It is concluded from the test that the shear behavior of recycled concrete beams is determined to have similar behavior of normal concrete beams. Therefore, from this study the application of recycled concrete to concrete structures may be possible. But, for using the recycled concrete widely, it is expected that the more studies on quality control, substitution ratio and mix design related with recycled concrete are necessary.