• Title/Summary/Keyword: aggregate structures

Search Result 354, Processing Time 0.033 seconds

A Study on the Bond Stress of Rebar in Reinforced Concrete Pavement using Recycled Aggregate (재생골재 활용 철근콘크리트포장 내 철근의 부착특성에 대한 연구)

  • Kim, Nak-Seok;Kim, Kwang-Tae;Jeon, Chan-Ki;Jeon, Joong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.77-84
    • /
    • 2005
  • Amount of demolished concretes is highly produced as dismantlement of structures to increased owing to usage alteration and deteriorated of concrete structures, but most of them have been used as material for simple reclamation. Therefore, if demolished concrete could be recycled as aggregate for concrete. it will contribute to solve the exhaustion of nature aggregate, in terms of saving resources and protecting environment, especially being want of resources in Korea. In this study it was investigated into experimental results that were carried out demolished concrete recycled aggregate gained from dismantled real structures and source concrete recycled aggregate produced according to respectively 5 steps of replacement ratio for recycling as pavement concrete aggregate.

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Experimental Study on the Characteristics of Polymer-modified Lightweight Aggregate Concrete Using SBR Latex (SBR Latex를 이용한 폴리머 개질 경량콘크리트의 특성에 관한 실험적 연구)

  • Ahn, Nam-Shik;Won, Dong-Min;Park, Noh-Hyun;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.61-72
    • /
    • 2009
  • As a trend of construction has become high-rise and larger, it is necessary to reduce the self-weight of structures and buildings. One of the most effective methods to reduce the self-weight of structures and buildings is to use the lightweight aggregate concrete. To complement the strength of the lightweight aggregate concrete, polymer was added to concrete's mixing. In this study, experiments to make the moderate mixing proportion of polymer modified lightweight concrete were performed. Also the hardened concrete tests were performed to investigate the physical characteristics of the polymer-modified lightweight aggregate concrete. As a result, the flexural strength was increased by a small quantity of SBR Latex. Based on the test results the estimating equation was proposed through the regression analysis.

  • PDF

Mechanical Properties of Reinforced High-Strength Concrete Using Fly-ash Artificial lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트의 역학적 특성)

  • 박완신;한병찬;성수용;윤현도;정수용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.151-156
    • /
    • 2001
  • Concrete has excellent characteristics as building material and functions relatively well; but it has many problems concerning too heavy weight of the structures. Accordingly, it is the assignment for study in the part of building materials to lighten and high strengthen the weight of concrete structures in order to improve those weak Points; and it seems one of the representative solutions to develop the high strength lightweight aggregate concrete. Based on the experimental results presented, the following conclusions are drawn. The concrete with unit weight of 1.96~2.03t/$m^{2}$, compressive strength of 322~431kgf/$cm^{2}$ was gained. So, it appears that the lightweight aggregate concrete will be useful for low unit weight and high strength lightweight aggregate concrete. In the end, to manufacture artificial lightweight aggregate concrete for construction work is necessary to develope artificial aggregate which has improved performances physically.

  • PDF

A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application (해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구)

  • Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.

Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes

  • Chen, Zongping;Xu, Jinjun;Liang, Ying;Su, Yisheng
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.929-949
    • /
    • 2014
  • Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concrete-filled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.

Mechanical behavior of concrete comprising successively recycled concrete aggregates

  • Verma, Surender K.;Ashish, Deepankar K.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • The concrete industry of developing countries like India consumes majority of natural resources. The increase in population has necessitated the construction of more and more structures. Further many structures have completed their life span or have undergone damages thus warranting the demolition of these structures. India produces approximately 23.75 million tons of recycled concrete aggregate (RCA) annually. The natural resources are depleting at a higher rate with the increasing demand of concrete industry. This difficulty can be reduced with the use of RCA in land fill and concrete manufacturing. Use of RCA can provide cost savings and better energy utilization. This paper presents mechanical behavior of concrete comprising successively recycled concrete aggregate. Mechanical properties of recycled concrete get affected with number of recycling. In mix design successive recycled concrete aggregate (SRCA) was used in place of natural aggregates (NA) with 100% replacement. The test results of the compressive, flexural strength and pulse velocity were obtained for 14 and 28 days of curing age which showed significant improvement in results.

Monitoring on Carbonation of Concrete Building with 100% Recycled Aggregate (순환골재를 100% 사용한 구조물의 탄산화 진행 모니터링)

  • Shin, Sung-Gyo;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Bo-Kyeong;Han, Sang-Hyu;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.124-125
    • /
    • 2015
  • Recycled aggregate is not used for structures because of negative awareness of quality. for improving the negative awareness, a concrete structure was built with 100% recycled aggregate and monitoring mechanical properties and durability was conducted. As a result, It was observed that mechanical properties and carbonation of structures with 100% recycled aggregate were fine.

  • PDF

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.