• 제목/요약/키워드: aggregate properties

검색결과 1,510건 처리시간 0.437초

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • 제20권1호
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제48권3호
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.

VERTICAL PROPERTIES OF THE GLOBAL HAZE ON TITAN DEDUCED FROM METHANE BAND SPECTROSCOPY BETWEEN 7100 AND 9200Å

  • Sim, Chae-Kyung;Kim, Sang-Joon;Kim, Joo-Hyeon;Seo, Haing-Ja;Jung, Ae-Ran;Kim, Ji-Hyun
    • Journal of The Korean Astronomical Society
    • /
    • 제41권3호
    • /
    • pp.65-76
    • /
    • 2008
  • We have investigated the optical properties of the global haze on Titan from spectra recorded between 7100 and $9200{\AA}$, where $CH_4$ absorption bands of various intensities occur. The Titan spectra were obtained on Feb. 23, 2005 (UT), near the times of the Cassini T3 flyby and Huygens probe, using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory in Korea. In order to derive the optical properties of the haze as a function of altitude, we developed an inversion radiative-transfer program using an atmospheric model of Titan and laboratory $CH_4$ absorption coefficients available from the literature. The derived extinction coefficients of the haze increase toward the surface, and the coefficients at shorter wavelengths are greater than those at longer wavelengths for the 30 - 120 km altitude range, indicating that the Titanian haze becomes optically thin toward the longer wavelength range. Total optical depths of the haze are estimated to be 1.4 and 1.2 for the 7270 - $7360{\AA}$ and 8940 - $9150{\AA}$ ranges, respectively. Based on the Huygens/DISR data set, Tomasko et al. (2005) reported total optical depths of 2.5 - 3.5 at $8290{\AA}$, depending on the assumed fractal aggregate particle model. The total optical depths based on our results are smaller than those of Tomasko et al., but they partially overlap with their results if we consider a large uncertainty from possible variations of the $CH_4$ mixing ratio over Titan's disk. We also derived the single scattering albedo of the haze particles as a function of altitude: it is less than 0.5 at altitudes higher than ${\sim}150\;km$, and approaches 1.0 toward the surface. This behavior suggests that, at altitudes above ${\sim}150\;km$, the average particle radius is smaller than the wavelengths, whereas near the surface, it becomes comparable or greater.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권6호
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제17권5호
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.

Mechanical Properties of Concrete Using Recycled Coarse Aggregate from Nuclear Power Plant Simulated Concrete (원자력발전소 모의 콘크리트로부터 생산된 순환 굵은 골재 활용 콘크리트 역학적 특성)

  • Lee, Seong-Cheol;Shin, Kyung-Joon;Kim, Chang-Lak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권2호
    • /
    • pp.167-174
    • /
    • 2020
  • Many researches have been conducted to utilize recycled aggregates in Korea, but since most sources of recycled aggregates are not clear, there is a lot of uncertainty in applying the existing research results on recycle of aggregates generated from nuclear power plants. In this study, therefore, in order to investigate the possibility of recycling coarse aggregates generated through dismantling of nuclear power plants in Korea, recycled coarse aggregates were produced from concrete simulating nuclear power plants in Korea. Using the recycled coarse aggregates, concrete was mixed in consideration of the mixing ratio of the recycled coarse aggregates, and the mechanical properties were experimentally investigated. From the test results, as the mixing ratio of recycled coarse aggregates increased. concrete compressive strength, tensile strength, and elastic modulus generally decreased up to 36, 37, and 27% from the mechanical properties of normal concrete, respectively. Therefore, it can be concluded that limitation on the mixing ratio of recycled coarse aggregates is necessary when coarse aggregates are recycled through dismantling of nuclear power plants.

Evaluation on Laboratory Moisture Damage Characteristics of the Asphalt Mixtures using Indirect Tensile Test (간접인장시험을 이용한 아스팔트 혼합물의 실내 수분손상 특성 평가)

  • Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권2D호
    • /
    • pp.243-248
    • /
    • 2008
  • Moisture damage of asphalt pavements can usually occur because of the loss of adhesion and cohesion between the asphalt binder and aggregate in the asphalt mixture due to presence of water. And this is one of the causes that is effect on the main distress of asphalt pavement. The objective of this study is to find out moisture damage characteristics of asphalt pavement. Effects of this study changes of the material properties and resistance characteristics of moisture damage on the asphalt mixtures under various temperatures and repeated immersion using indirect tensile test and modify Lottman test were evaluated during this study. The asphalt mixtures were produced using straight asphalt binder, SBS modified asphalt binder and aggregates. The material properties (resilient modulus, indirect tensile strength, failure energy and $DCSE_f$) of the asphalt mixtures were generally decreased with increasing to moisture damage caused by the number of repeated immersion. The decrease ratios of material properties by repeated immersion on SBS modified asphalt mixtures were lower than those of straight asphalt mixtures at all three test temperatures. As a conclusion, current criterion for evaluation moisture damage of asphalt mixtures is difficult for using distinction standard because of the limited evaluation criterion with one time immersion and single material property. Based on this research, to evaluate long term moisture damage on asphalt mixtures, material property tests of various kinds with repeated immersion test are considered.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • 제26권1호
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제40권5호
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Three Dimensional Measurements of Pore Morphological and Hydraulic Properties (토양 공극 형태와 수문학적 특성에 대한 3 차원적 측정)

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Heck, Richard;Elliot, Tom;Ziska, Laise;Geaorge, Kate;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제43권4호
    • /
    • pp.415-423
    • /
    • 2010
  • Pore network models are useful tools to investigate soil pore geometry. These models provide quantitative information of pore geometry from 3D images. This study presents a pore network model to quantify pore structure and hydraulic characteristics. The objectives of this work were to apply the pore network model to characterize pore structure from large images to quantify pore structure, calculate water retention and hydraulic conductivity properties from a three dimensional soil image, and to combine measured hydraulic properties from experiments with calculated hydraulic properties from image. Soil samples were taken from a site located at the Baltimore science center, which is located inside of the city. Undisturbed columns were taken from the site and scanned with a computer tomographer at resolutions of 22 ${\mu}m$. Pore networks were extracted by medial-axis transformation and were used to measure pore geometry from one of the scanned samples. Water retention and unsaturated hydraulic conductivity values were calculated from the soil image. Properties of soil bulk density, water retention and unsaturated hydraulic conductivity were measured from three replicates of scanned soil samples. 3D image analysis provided accurate detailed pore properties such as individual pore volumes, pore length, and tortuosity of all pores. These data made possible to calculate accurate estimations of water retention and hydraulic conductivity. Combination of the calculated and measured hydraulic properties gave more accurate information on pore sizes over wider range than measured or calculated data alone. We could conclude that the hydraulic property computed from soil images and laboratory measurements can describe a full structure of intra- and inter-aggregate pores in soil.