• Title/Summary/Keyword: age-adjusted effective modulus method

Search Result 18, Processing Time 0.028 seconds

Improvement in Long-term Behavior Estimation of Prestressed Composite Girders for Various Construction Sequences using Parametric Study (변수해석을 통한 프리스트레스트 합성거더의 시공단계별 장기거동 평가법 개선방안)

  • Bae, Doobyong;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.369-377
    • /
    • 2013
  • The age-adjusted effective modulus method has been known to provide more precise assessment than the traditional Yassumi method for long-term behavior estimation of prestressed composite girders. The age-adjusted effective modulus method, however, involves complicated calculation, thereby making the Yassumi method more prevalent in actual design. This study presents rational approaches to revise creep coefficients for the Yassumi method by using parametric study results obtained from the age-adjusted effective modulus method.

Column Shortening Analysis of Composite Columns by Age-adjusted Effective Modulus Method (재령보정유효탄성계수법에 의한 합성기둥 축소량 해석)

  • Kim Han-Soo;Kim Jae-Keun;Kim Do-Kyoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.490-495
    • /
    • 2006
  • The analysis method proposed by PCA is widely used in calculating the column shortening of reinforced and composite columns of a tall building. However, residual creep factor which relates creep strain of reinforced concrete to creep strain of plain concrete is based on Rate of Creep Method (RCM) which has theoretical defects and is considered obsolete. In this paper, a new equation for the residual creep factor based on Age-adjusted Effective Modulus Method (AEMM) which is considered exact and better than RCM is proposed. The residual creep factor by RCM is found to be higher than one by AEMM, which means current PCA method overestimates the shortening of a reinforced concrete column. By using the residual creep factor by AEMM, more exact column shortening of a tall building can be obtainable with a simple modification to PCA method.

  • PDF

Experimental Verification of Age-adjusted Effective Modulus Method to Long-Term Behavior Estimation of Prestressed Composite Girders (재령보정 유효계수방법에 의한 프리스트레스트 합성거더의 장기거동 실험 검증)

  • Bae, Doo-Byong;Oh, Chang-Kook;Choi, Sok-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.571-582
    • /
    • 2012
  • Prestressed composite girders provide efficient composite action by applying prestress to the sub-encasing concrete. In this study, an enhanced prestressed composite girder with forms suspended from the steel girder is utilized. Long-term behavior of the prestressed composite girder is estimated using age-adjusted effective modulus method, which is verified experimentally using measurements obtained from an in-service bridge. Then, parametric study is carried out to investigate the influences caused by ambient temperature, humidity, prestressing and concrete casting date.

Comparative Study of Long-Term Deflection Estimated by KCI Code Multiplier and Age-adjusted Effective Modulus Method (설계기준과 AEMM에 의해 추정된 장기처짐량의 비교)

  • Choi, Jae-Keun;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.361-364
    • /
    • 2006
  • It is specified in KCI code that long-tenn deflection shall be determined by multiplying the immediate deflection by KCI code multiplier, unless it is obtained by a more comprehensive analysis. Therefore, in this study, the estimation method of long-term deflection by KCI code multiplier is known resonable by comparing analysis results using KCI code multiplier and AEMM.

  • PDF

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong;Hong, Seongwon
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.671-683
    • /
    • 2022
  • To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

Estimation of Stress Variations on Time Effects in Prestressed Concrete Composite Girder Bridges (PCS 합성거더교의 시간에 따른 응력 변화 추정)

  • Yoon, Ji-Hoon;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.319-322
    • /
    • 2005
  • When a concrete structure is subjected to load, its response is both immediate and time dependent. Under sustained load, the deformation of a structure gradually increases with time and eventually may be many time greater than its instantanneous value. The gradual development of strain with time is caused by creep and shrinkage. On this study, to estimate of stress variations on time effects in partially prestressed concrete composite girder bridges, computer program applied Age-adjusted Effective Modulus Method(AEMM) in used.

  • PDF

Long-term Behavior of Steel-Concrete Composite Girders due to Concrete Shrinkage (콘크리트 건조수축에 의한 합성거더의 장기거동)

  • Bae, Doo Byong;Youn, Seok Goo;Ham, Sang Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.807-818
    • /
    • 2004
  • Experimental tests and theoretical methods of the analysis of the concrete shrinkage behaviors of steel-concrete composite girders are described herein. Steel-concrete composite test specimens were fabricated in the laboratory, and long-term behaviors such as deflections, curvatures, and strains were measured for one year. Test results were compared to the analytical results obtained by using the age-adjusted effective modulus method (AEMM). In addition, composite girders have been analyzed to investigate the effects of several parameters on the concrete shrinkage behaviors. From the long-term test results, it could be used to validate AEMM for the evaluation of the shrinkage behavior of composite girders. Because the shrinkage of the reinforced concrete slab in composite girders may lead to large tensile stresses in the concrete section, the transverse cracking of the slab could occur both in the positive and negative regions. Therefore, if the cracking of concrete would be ignored,it might lead to an overestimation of the stresses of the steel section of composite girders. Based on this research, it is proposed that the effect of transverse concrete cracking on the shrinkage behavior of steel-concrete composite bridges be considered.

Aging Coefficient Formula of Reinforced Concrete Members under Axial Compression (축하중을 받는 철근콘크리트 부재의 재령계수식 제안)

  • Yoo, Jae-Wook;Yu, Eun-Jong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2013
  • The Age-adjusted effective Modulus Method(AEMM) is one of the methods adopted for the construction stage analysis of concrete structures. The AEMM uses the aging factor to consider the effects of the varying concrete stress. In the aspects of computation time and the accuracy of the results, the AEMM is considered as one of most appropriate methods for construction stage analysis of tall building structures. Previous researches proposed appropriate values of the aging factor in the forms of graphs or using very simple equations. In this paper, an equation for estimating the aging factor as a function of rebar ratio in the section, compressive strength of concrete, notional member dimension, and age of concrete at the load application. The validity of aging factor proposed in this paper were examined by the comparison with the results of step-by step method.

Curvature and Deflection of Reinforced Concrete Member Due to Shrinkage (건조수축에 의한 철근콘크리트 부재의 곡률과 처짐)

  • 김진근;이상순;김민수;신병천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.333-338
    • /
    • 1998
  • Deflections due to warping are frequently ignored in design calculation. For thin member, shrinkage deflection results in important and objectionable additions to the dead load deflection. Thus it may be desirable to consider warping effects due to shrinkage for thin member. Some methods for computing shrinkage curvature have been proposed by many researchers. The approximate methods widely used in the recent years are the equivalent tensile force method. Miller's method and Branson's method (an empirical method based on Miller's approach extended to include doubly reinforced beams). These method were somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, the approximate method for computing shrinkage curvature are reviewed and new approximate method based on the Age-Adjusted Effective Modulus method is proposed.

  • PDF

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.