• 제목/요약/키워드: agarose

검색결과 615건 처리시간 0.025초

Substrate bonding technique using the agar-epoxy composites for flexible LCD

  • Bae, Ji-Hong;Jang, Se-Jin;Choi, Hong;Kim, Sang-Il;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.733-736
    • /
    • 2007
  • We have proposed novel bonding technique of substrates for developing the flexible LCD with high quality. The gel type mixture of agarose and UV curable epoxy developed to obtain tight bonding ability and enhanced electro-optical characteristic simultaneously. This technique can be used to roll-to-roll process for fabricating the flexible LCDs.

  • PDF

Counterion-dye staining method for DNA in agarosegels using indoine blue and methyl orange

  • Hwang, Sun-Young;Jin, Li-Tai;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.142.1-142.1
    • /
    • 2003
  • Sensitive and safe method for visualization of DNA in agarose gels using visible dye is described. To improve the sensitivity, we studied a counterion-dye staining method using methyl orange as a counterion-dye which contributes to reduce excessive background staining by indoine blue. Dye concentrations, PH of staining solution, mixing molar ratio of two dyes, and staining times were optimized for the counterion-dye staining. By the staining with a mixed solution of 0.005% indoine blue and 0.00165% methyl orange in 10% ethanol 0.2M sodium acetate, 8 ng of the 3 kb DNA in an agarose gel was detected within 1hr. (omitted)

  • PDF

Atomic Force Microscopy (AFM) Tip based Nanoelectrode with Hydrogel Electrolyte and Application to Single-Nanoparticle Electrochemistry

  • Kyungsoon Park;Thanh Duc Dinh;Seongpil Hwang
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.261-267
    • /
    • 2024
  • An unconventional fabrication technique of nanoelectrode was developed using atomic force microscopy (AFM) and hydrogel. Until now, the precise control of electroactive area down to a few nm2 has always been an obstacle, which limits the wide application of nanoelectrodes. Here, the nanometer-sized contact between the boron-doped diamond (BDD) as conductive AFM tip and the agarose hydrogel as solid electrolyte was well governed by the feedback amplitude of oscillation in the non-contact mode of AFM. Consequently, this low-cost and feasible approach gives rise to new possibilities for the fabrication of nanoelectrodes. The electroactive area controlled by the set point of AFM was investigated by cyclic voltammetry (CV) of the ferrocenmethanol (FcMeOH) combined with quasi-solid agarose hydrogel as an electrolyte. Single copper (Cu) nanoparticle was deposited at the apex of the AFM tip using this platform whose electrocatalytic activity for nitrate reduction was then investigated by CV and Field Emission-Scanning Electron Microscopy (FE-SEM), respectively.

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

낙동강 하류에 분포하는 남조류 Microcystis aeruginosa의 무균분리 및 16S rRNA 유전자 염기서열분석 (Axenic Isolation and 16S rRNA Gene Sequence of the Cyanobacterium Microcystis aeruginosa in Downstream of Nakdong River)

  • 박홍기;정은영;이유정;정종문;홍용기
    • 생명과학회지
    • /
    • 제12권2호
    • /
    • pp.158-163
    • /
    • 2002
  • 남조류 Microcystis aeruginosa를 무균적으로 분리하기 위해 낙동강 물금지역의 수화를 멸균 증류수로 vortex 전처리를 하였으며, 세균제거 및 무균상태를 계속 유지하기 위하여 항생물질(ampicillin 150 $\mu$g/$m\ell$, neomycin 25 $\mu$g/$m\ell$)을 배지에 첨가하고, 독립 집락으로 형성시켜 오염 기회를 줄이기 위하여 0.7% agarose로 고형화시킨 CB고체배지에서 3$0^{\circ}C$, 40 $\mu$mol m$^{-2}$ s$^{-1}$ 광 조건으로 배양하였다. 그 결과 분리되어진 26개의 Microcystis aeruginosa colony 중 3개의 무균 균주만이 확보되었다. 3개의 무균균주를 16S rRNA primer를 이용하여 PCR 증폭한 결과 M. aeruginosa AF 139292와 99.5에서 100%의 상동성을 가지는 것으로 나타났다.

Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal

  • Baek, Song;Han, Na Rae;Yun, Jung Im;Hwang, Jae Yeon;Kim, Minseok;Park, Choon Keun;Lee, Eunsong;Lee, Seung Tae
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.117-122
    • /
    • 2017
  • Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs.

Development of a Three-dimensional Hydrogel System for the Maintenance of Porcine Spermatogonial Stem Cell Self-renewal

  • Park, Ji Eun;Park, Min Hee;Kim, Min Seong;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.343-351
    • /
    • 2017
  • Porcine spermatogonial stem cells (SSCs) prefer three-dimensional (3D) culture systems to 2D ones for the maintenance of self-renewal. Of the many 3D culture systems, agar-based hydrogels are candidates for supporting porcine SSC self-renewal, and there are various types of agar powder that can be used. In this study, we sought to identify an agar-based 3D hydrogel system that exhibited strong efficacy in the maintenance of porcine SSC self-renewal. First, 3D hydrogels with different mechanics were prepared with various concentrations of Bacto agar, lysogeny broth (LB) agar, and agarose powder, and the 3D hydrogel with the strongest alkaline phosphatase (AP) activity and greatest increase in colony size was identified for the different types of agar powder. Second, among the porcine SSCs cultured in the different 3D hydrogels, we analyzed the colony formation, morphology, and size; AP activity; and transcription and translation of porcine SSC-related genes, and these were compared to determine the optimal 3D hydrogel system for the maintenance of porcine SSC self-renewal. We found that 0.6% (w/v) Bacto agar-, 1% (w/v) LB agar-, and 0.2% (w/v) agarose-based 3D hydrogels showed the strongest maintenance of AP activity and the most pronounced increase in colony size in the culture of porcine SSCs. Moreover, among these hydrogels, the strongest transcription and translation of porcine SSC-related genes and largest colony size were detected in porcine SSCs cultured in the 0.2% (w/v) agarose-based 3D hydrogel, whereas there were no significant differences in colony formation and morphology. These results demonstrate that the 0.2% (w/v) agarose-based 3D hydrogel can be effectively used for the maintenance of porcine SSC self-renewal.

배지응고제의 종류와 농도에 따른 벼 약배양 효율 (Effects of Gelling Agent Brands and Concentration on Rice Anther Culture)

  • 양세준;오병근
    • 식물조직배양학회지
    • /
    • 제25권5호
    • /
    • pp.295-299
    • /
    • 1998
  • 벼 약배양 배지에 첨가되는 배지응고제의 종류와 농도가 캘러스형성 및 식물체재분화에 미치는 영향을 구명하기 위하여 실험한 결과는 다음과 같다. 배지응고제인 Bacto agar(Difco, 04140-01), Agrose(Sigma, Type 1) 0.4% 처리에서 각각 39%, 55%의 캘러스형성율을 보였으나 농도가 높아질수록 캘러스 형성율이 현저하게 감소하였다. Gelrite(Kelco, 143364)의 0.2~0.8%처리에서는 농도에 따른 차이가 인정되지 않았으며 0.6% 처리에서 44%의 캘러스 형성율을 보였다. 고농도 배지응고제 처리에서 형성된 캘러스는 생장이 늦은 반면 작고 단단하며 백색에 가까운 배발생적인 특성을 보였다. 식물체재분화율은 고농도 배지응고제 처리에서 형성된 캘러스에서 양호하였으며, 또한 고농도 배지응고제가 첨가된 식물체분화배지에서 높았다. 저농도 배지응고제 처리에서 형성된 약치상후 60일된 캘러스는 식물체 재분화율이 급격히 감소하였다. 치상된 약에 대한 최종적인 식물체분화 효율을 향상시키기 위해서는 0.6∼0.8% Gelrite 첨가배지에서 형성된 캘러스를 1.6% Bacto agar 및 Agarose 또는 0.8% Gelrite 식물체분화배지에 이식할 것을 추천한다.

  • PDF