• 제목/요약/키워드: agarase

검색결과 99건 처리시간 0.052초

Purification and Characterization of Neoagarotetraose from Hydrolyzed Agar

  • Jang, Min-Kyung;Lee, Dong-Guen;Kim, Nam-Young;Yu, Ki-Hwan;Jang, Hye-Ji;Lee, Seung-Woo;Jang, Hyo-Jung;Lee, Ye-Ji;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1197-1200
    • /
    • 2009
  • The whitening effect, tyrosinase inhibition, and cytotoxicity of neoagarotetraose were measured after its purification from hydrolyzed agar by gel filtration chromatography. In melanoma B16F10 cells, the melanin content of neoagarotetraose-treated cells was the same as that treated by kojic acid or arbutin. In addition, tyrosinase of melanoma cells was strongly inhibited by neoagarotetraose at a concentration of $1{\mu}g/ml$ and similarly inhibited at 10 and $100{\mu}g/ml$ compared with those by arbutin or kojic acid. The activity of mushroom tyrosinase showed a 38% inhibition by neoagarotetraose at $1{\mu}g/ml$, and this inhibitory effect was more efficient than that by kojic acid. Neoagarotetraose revealed a similar $IC_{50}$ (50% inhibition concentration) value for mushroom tyrosinase as that by kojic acid. These data suggest that the neoagarotetraose generated from agar by recombinant $\beta$-agarase might be a good candidate as a cosmetic additive for the whitening effect.

김(Pyropia yezoensis)에서 분리한 포피란 효소가수분해물의 화학적 및 유동 특성 (Chemical Composition and Rheological Properties of Enzymatic Hydrolysate of Porphyran Isolated from Pyropia yezoensis)

  • 인서경;구재근
    • 한국수산과학회지
    • /
    • 제48권1호
    • /
    • pp.58-63
    • /
    • 2015
  • The chemical and rheological properties of natural and enzymatically hydrolyzed porphyran isolated from Pyropia yezoensis were investigated. The enzymatic hydrolysate was prepared by hydrolysis of porphyran using ${\beta}$-agarase followed by fractionation based on molecular weight (>300 kDa (Fr-1), 100-300 kDa (Fr-2), 10-100 kDa (Fr-3) and 1-10 kDa (Fr-4) using an ultrafiltration membrane. Each hydrolysate fraction consisted mainly of galactose (42.7-57.5%), 3,6-anhydro galactose (6.5-15.1%) and ester sulfate (8.6-14.1%). The sulfate content of the enzymatically hydrolyzed fractions decreased with an increase in molecular weight, whereas the 3,6-anhydro galactose content increased significantly. The rheological behavior of porphyran and enzymatically hydrolyzed porphyran solutions demonstrated a pseudoplastic behavior, which agrees with the Herschel-Bulkley model. The effect of temperature on the viscosity of the porphyrans and hydolysate fractions were measured and modeled using the Arrhenius equation. The activation energy of the porphyrans and enzymatically hydrolyzed porphyran (Fr-1) increased from 12.30 to 20.29 kJ/mol and 9.06 to 23.84 kJ/mol, respectively with increasing concentrations from 3% to 7%. These data indicate that the extent of the apparent viscosity of porphyran and enzymatically hydrolyzed porphyran are influenced by both temperature and concentration.

다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열 (Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes)

  • 정재준;배승섭;정다운;백경화
    • 미생물학회지
    • /
    • 제54권3호
    • /
    • pp.299-301
    • /
    • 2018
  • Microbulbifer agarilyticus GP101은 소라(Turbo cornutus)의 내장에서 분리되었으며 해조류 유래 다당류인 한천, 알긴산, ${\kappa}$-카라기난을 분해하는 특징이 있다. GP101 균주의 유전체는 4,255,625 bp 크기로 3,458개의 코딩 서열을 포함하며 55.4%의 GC 함량을 가진다. BLASTP 분석 결과 7개의 agarase, 5개의 alginate lyase, 10개의 glucanase, 4개의 chitinase, 2개의 xylanases, 1개의 ${\kappa}$-carrageenase, 1개의 laminarinase의 존재를 확인하였다. M. agarilyticus GP101의 유전체 정보는 다당류의 생물전환 공정에 이용할 수 있는 유전 정보를 제공할 수 있을 것이다.

Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast

  • Lee, Ji-Soo;Hong, Soon-Kwang;Lee, Chang-Ro;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.625-632
    • /
    • 2019
  • The unified saccharification and fermentation (USF) system was developed for direct production of ethanol from agarose. This system contains an enzymatic saccharification process that uses three types of agarases and a fermentation process by recombinant yeast. The $pGMF{\alpha}-HGN$ plasmid harboring AGAH71 and AGAG1 genes encoding ${\beta}-agarase$ and the NABH558 gene encoding neoagarobiose hydrolase was constructed and transformed into the Saccharomyces cerevisiae 2805 strain. Three secretory agarases were produced by introducing an S. cerevisiae signal sequence, and they efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexose. To directly produce ethanol from agarose, the S. cerevisiae $2805/pGMF{\alpha}-HGN$ strain was cultivated into YP-containing agarose medium at $40^{\circ}C$ for 48 h (for saccharification) and then $30^{\circ}C$ for 72 h (for fermentation). During the united cultivation process for 120 h, a maximum of 1.97 g/l ethanol from 10 g/l agarose was produced. This is the first report on a single process containing enzymatic saccharification and fermentation for direct production of ethanol without chemical liquefaction (pretreatment) of agarose.

Properties of agarase from a noble marine bacterium SL-5

  • Lee, Dong-Geun;Kim, Nam-Young;Jang, Min-Kyung;Lee, Jae-Hwa;Lee, Jung-Hyun;Kim, Sang-Jin;Lee, Sang-Hyeon
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2006년도 제47회 학술심포지움 및 추계국제학술대회
    • /
    • pp.59.1-59.1
    • /
    • 2006
  • PDF