• 제목/요약/키워드: affinity chromatography

검색결과 605건 처리시간 0.03초

소(牛) 태아(胎兒) 대동맥(大動脈)으로부터 단백 분해효소 억제제 존제 하에 Lysyl Oxidase의 순수분리(純棒分離) -다양성(多形性)에 대(對)한 반론(反論)- (Purification and Characterization of Lysyl Oxidase from Fetal Bovine Aorta in the presence of protease inhibitors -Evidence against polymorphism-)

  • 한송
    • Journal of Oral Medicine and Pain
    • /
    • 제25권1호
    • /
    • pp.29-39
    • /
    • 2000
  • 소(牛) 태아 대동맥으로 부터 Urea 추출, Sephacryl S200 HR 크로마토그라피, Cibacron blue-agarose 친화 크로마토그라피, 그리고 Sephacryl S300 HR 크로마토그라피를 이용하여 lysyl oxidase를 순수분리를 하였고 분리가간 중 항상 단백분해 억제제를 첨가하였다. 순수 분리된 효소는 가교결합이 없는 교원단백질과 엘라스틴에 활성을 보였고, BAPN 같은 아미노나이트릴에 의하여 억제되였다. Sephacryl S300 HR 크로마토그라피로 분리 될 경우, 이 효소는 0.45의 $K_{av}$ ($V_t$의 65%)값을 보였고, 이온교환 고속액체 크로마토그라피의 경우에서는 이온 강도가 0.1-0.15 사이에서 하나의 피크로 용리되었다. 순수 분리된 이 효소는 SDS 폴리아크릴아마이드 전기영동에서는 하나의 밴드로 이동하였는데, 환원이 될 경우에는 분자량이 33,500, 비환원이 될 경우에는 분자량이 24,500의 위치로 이동하였다. 이온교환 고속액체 크로마토그라피의 결과를 참조하여, 다른 보고서와는 달리 소(牛) 태아(服兒) 대동맥(大動服)에는 여러 종류가 아닌 한 종류의 lysyl oxidase가 존재한다고 결론을 내렸다.

  • PDF

Possible Molecular Chaperones for Lipoprotein Lipase in Endoplasmic Reticulum

  • Yang, Jeong-Yeh;Kim, Mee-Ae;Koo, Bon-Sun;Kim, Sun-Mee;Park, Jin-Woo
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.311-316
    • /
    • 1999
  • Studies in adipocytes indicate that secretion of active lipoprotein lipase (LPL) was strictly regulated by a quality control system in the endoplasmic reticulum (ER). However, there has been no report about the ER chaperones participating in the folding and assembly of LPL. Many chaperones are known to bind unfolded proteins and dissociate from them through the ATP-hydrolyzing reaction. In this study, putative ER chaperones for LPL were determined by affinity chromatography using denatured LPL as an affinity ligand and elution with ATP. BiP, grp94, calreticulin, and another 50 kDa K-D-E-L protein in the ER of rat adipose tissue were bound to denatured LPL and eluted by ATP. Calnexin was bound to denatured LPL; however, it was not eluted by ATP but by acetic acid. These results indicate that, at least, BiP, grp94, calreticulin, calnexin, and the unidentified 50 kDa protein might act as putative chaperones for the proper folding and assembly of LPL in ER.

  • PDF

Characterization of Two Forms of Acetolactate Synthase from Barley

  • Yoon, Jong-Mo;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.456-461
    • /
    • 2003
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical - 65 kDa. The two ALS forms exhibited different properties with respect to the values of $K_m$, pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.

Construction and Characterization of a Single-Chain Immunoglobulin

  • Kim, Youn-Kyu;Choi, In-Hak;Ryu, Chun-Jeih;Hong, Hyo-Jeong
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.177-181
    • /
    • 1997
  • We constructed a single-chain immunoglobulin in which the carboxyl end of the heavy chain variable domain is covalently joined to the amino terminus of the light chain variable domain via peptide linker and the carboxyl end of the light chain variable domain is linked to human ${\gamma}1$ Fc region through the hinge region. The molecule was expressed in Chinese hamster ovary cells, assembled into a dimeric molecule and secreted into the culture medium. The dimeric molecule (2E11) was purified from the culture supernatant by affinity chromatography on Protein G-Sepharose column. The size of the unreduced or reduced protein was the expected molecular weight of approximately 120 or 60 kDa, respectively, as assessed by SDS-polyacrylamide gel electrophoresis. The antigen-binding affinity of 2E11 was almost the same as that of a native antibody counterpart (CS131A), suggesting that the single-chain immunoglobulin may function like a native antibody.

  • PDF

Active-Site Mutants of Human Glutathione S-Transferase P1-1: Effects of the Mutations on Substrate Specificity and Inhibition Characteristics

  • Park, Hee-Joong;Yoon, Suck-Young;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • 제31권4호
    • /
    • pp.399-404
    • /
    • 1998
  • In order to gain further insight on the relationship between structure and function of glutathione S-transferase (GST), the six active-site mutants, R13T, K44T, Q51A, Q64A, S65A, and D98A, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The active-site mutants showed marked differences in substrate specificity. The substitution of Gln51 with threonine resulted in a drastic decrease in the specific activities to <10% of the wild-type value. The substitution of Arg13 with threonine resulted in more decreased specific activity toward cumene hydroperoxide and in the $I_{50}$ values of S-(2,4-dinitrophenyl) glutathione and benanstatin A. These results suggest that the substitution of Arg13 with threonine changes the conformation of the active site to increase the affinity for the product or electrophilic substrate. Lys44 seems to be in the vicinity of the H-site of hGST P1-1 or may contribute to some extents to the electrophile binding.

  • PDF

Production of Recombinant Humanized Anti-HBsAg Fab Fragment from Pichia pastoris by Fermentation

  • Deng, Ning;Xiang, Junjian;Zhang, Qing;Xiong, Sheng;Chen, Wenyin;Rao, Guirong;Wang, Xunzhang
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.294-299
    • /
    • 2005
  • In this report, we describe the high-yield secretory expression of the recombinant human anti-HBsAg Fab fragment from Pichia pastoris that was achieved by co-integration of the genes encoding the heavy and light chains (both under the control of alcohol oxidase promoter) into the genome of the yeast cells. The fed-batch fermentations were carried out in a 5 L scale. Both chains of the Fab were successfully expressed upon methanol induction. The absorbance ($OD_{600}$) of the broth can reach 350~500 at the end of fed-batch phase. After the induction, the expression level of the recombinant Fab (soluble) reached 420~458 mg/L. The recombinant Fab fragment was purified from the crude culture supernatant by ion exchange chromatography and the purity of the recombinant Fab fragment was over 95%. The affinity activities of the crude fermentation supernatant and the purified Fab were analyzed by indirect ELISA, which showed that the purified recombinant Fab fragment had high affinity activity with hepatitis B surface antigen.

Characterization of Aspartate Aminotransferase Isoenzymes from Leaves of Lupinus albus L. cv Estoril

  • Martins, Maria Luisa Louro;De Freitas Barbosa, Miguel Pedro;De Varennes E Mendonca, Amarilis Paula Alberti
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.220-227
    • /
    • 2002
  • Two aspartate aminoransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT-2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8,0 and 9.0) and temperature ($60-65^{\circ}C$) were similar for both isoenzymes. In the temperature range of $45-65^{\circ}C$, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Candida sp. BT001의 xylose reductase의 정제 및 성질 (Purification of xylose reductase from Candida sp. BT001 and characterization of its properties)

  • 황인균;이상협;이왕식;방원기
    • Applied Biological Chemistry
    • /
    • 제36권3호
    • /
    • pp.178-183
    • /
    • 1993
  • D-xylose의 통성 발효성 효모, Candida sp. BT001로부터 D-xylose를 xylitol로의 전환을 촉매하는 효소, xylose reductase(alditol: $MADP^+$ 1-oxidoreductase, EC 1.1.1.21)를 salt fractionation, ion exchange, gel filtration과 affinity chromatography를 거쳐 정제하여 그 성질을 조사하였다. 정제된 xylose reductase는 보효소 NADPH 및 NADH에 모두 특이성을 나타내었으며, 또한 각각의 보효소에 대해 활성을 지니는 효소는 따로 분리되지 않았다. Specific activity는 NADPH에 대해 11.78 U/mg, MADH에 대해 6.01 U/mg이었으며, NADH/NADPH의 활성비는 0.51이었다. 정제된 xylose reductase의 분자량은 SDS-PAGE상에서 31,000, gel filtration상에서 61,000으로 2개의 subunit로 구성된 효소로 추정하였다. 정제된 xylose reductase의 D-xylose와 NADPH 및 NADH에 대한 Km값은 각각 $94.2{\times}10^{-3}M,\;0.011{\times}10^{-3}M$$0.032{\times}10^{-3}M$ 이었다. Aldose들에 대한 xylose reductase의 활성은 L-arabinose, D-xylose순으로 높았다. 최적 효소 반응의 pH 및 반응 온도는 각각 6.2와 $45^{\circ}C$이었으며, 이 효소는 $30^{\circ}C$에서 20분간 안정하였다.

  • PDF

쥐노래미 eye-specific LDH C4 동위효소의 정제 및 특성 (Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4 Isozyme in Greenling (Hexagrammos otakii))

  • 조성규;염정주
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1565-1572
    • /
    • 2011
  • 쥐노래미(Hexagrammos otakii) 눈 조직의 젖산탈수소효소(EC 1.1.1.27, lactate dehydrogenase, LDH) eye-specific $C_4$ 동위효소를 affinity chromatography 및 continuous-elution electrophoresis system으로 정제하였다. 정제된 eye-specific LDH $C_4$ 동위효소의 분자량은 154.8 kDa이었다. 효소반응의 최적 pH는 8.5로 나타났다. 피루브산을 기질로 하였을 때 eye-specific LDH $C_4$ 동위효소의 $K^{PYR}_m$ 값은 $1.88{\times}10^{-5}$ M로 나타났다. 본 실험결과 eye-specific LDH $C_4$ 동위효소의 활성 측정 시 pH를 고려해야만 하고 eye-specific LDH $C_4$ 동위효소는 LDH A4 동위효소보다 피루브산에 대한 기질결합친화성이 큰 것으로나타났다. 생성된 eye-specific LDH $C_4$ 동위효소에 대한 항체는 사람에서의 병증진단 및 어류에서의 비교생리학적 연구에 폭 넓게 사용될 것이라고 생각된다.