DOI QR코드

DOI QR Code

Characterization of Two Forms of Acetolactate Synthase from Barley

  • Yoon, Jong-Mo (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University) ;
  • Yoon, Moon-Young (Department of Chemistry, Hanyang University) ;
  • Kim, Young-Tae (Department of Microbiology, Pukyong National University) ;
  • Choi, Jung-Do (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University)
  • Received : 2003.02.24
  • Accepted : 2003.03.13
  • Published : 2003.09.30

Abstract

Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical - 65 kDa. The two ALS forms exhibited different properties with respect to the values of $K_m$, pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.

Keywords

References

  1. Bekkaoui, F., Schorr, P. and Crosby, W. L. (1993) Acetolactate synthase from Barrasica napus: Immunological characterization and quaternary structure of the native enzyme. Physiol. Plant. 88, 475-484. https://doi.org/10.1111/j.1399-3054.1993.tb01362.x
  2. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Chipman, D., Barak, Z. and Schloss, J. V. (1998) Biosynthesis of 2-aceto-2-hydroxy acid: Acetolactate synthase and acetohydroxyacid synthases. Biochem. Biophys. Acta 1385, 401-419. https://doi.org/10.1016/S0167-4838(98)00083-1
  4. Chong, C.-K., Shin, H.-J., Chang, S.-I. and Choi, J.-D. (1999) The roles of tryptophanyl residues on tobacco acetolactate synthase Biochem. Biophys. Res. Commun. 259, 136-140. https://doi.org/10.1006/bbrc.1999.0740
  5. Chong, C.-K. and Choi, J.-D. (2000) Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun. 279, 462-467. https://doi.org/10.1006/bbrc.2000.3958
  6. Davis, E. J., Blatt, J. M., Henderson, E. K., Whitalker, J. J. and Jackson, J. H. (1977) Valine-sensitive acetohydroxyacid synthase in Escherichia coli K-12: Unique regulation by multiple genetic sites. Mol. Gen. Genet. 156, 239-249. https://doi.org/10.1007/BF00267178
  7. Duggleby, R. G. and Pang, S. S. (2000) Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33, 1-36.
  8. Eoyang, L. and Silverman, P. M. (1984) Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. J. Bacteriol. 157, 184-189.
  9. Grimminger, H. and Umbarger, H. E. (1979) Acetohydroxyacid synthase I of Escherichia coli: Purification and properties. J. Bacteriol. 137, 846.
  10. Joo, H. S. and Kim, S. S. (2001) Purification and characterization of the anabolic acetolactate synthase III from Serratia marceacens ATCC 75419. J. Biochem. Mol. Biol. 34, 244-249.
  11. Kleschick, W. A., Costales, M. J., Dunbar, J. E., Meikla, R. W., Monte, W. T., Pearson, N. R., Snider, S. W. and Vinogradoff, Q. P. (1990) New herbicidal derivatives of 1,2,4-triazol [1.5-a] pyrimidine. Pestic. Sci. 29, 341-355. https://doi.org/10.1002/ps.2780290309
  12. Laemmli, U. K. (1979) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 620-685.
  13. LaRossa, R. A. and Schloss, J. V. (1984) The sulfonylurea herbicide sulfometuron methyl is extremely potent and selective inhibitor of acetolactate synthase in salmonella typhimurium. J. Biol. Chem. 259, 2753-8757.
  14. Miflin, B. J. (1971) Cooperative feedback control of barley acetohydroxyacid synthase by leucine, isoleucine, and valine. Arch. Biochem. Biophys. 146, 542-550. https://doi.org/10.1016/0003-9861(71)90159-7
  15. Namgoong, S. K., Lee, H. J., Kim, Y. S., Shin, J.-H., Che, J.-K., Jang, D. Y., Kim, G. S., Yoo, J. W., Kang, M.-K., Kil, M.-W., Choi, J.-D. and Chang, S.-I. (1999) Synthesis of the quinolinelinked triazolopyrimidine analogues and their interactions with the recombinant tobacco acetolactate synthase. Biochem. Biophy. Res. Commun. 258, 797-801. https://doi.org/10.1006/bbrc.1999.0708
  16. Ray, T. B. (1984) Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis of plants. Plant Physiol. 75, 827-831. https://doi.org/10.1104/pp.75.3.827
  17. Robertson, E. F., Dannelly, H. K., Malloy, P. J. and Reeves, H. C. (1987) Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal. Biochem. 167, 290-294. https://doi.org/10.1016/0003-2697(87)90166-7
  18. Shaner, D. L., Anderson, P. C. and Stidham, M. A. (1984) Imidazolinones: potent inhibitor of acetohydroxyacid synthase. Plant Physiol. 76, 545-546. https://doi.org/10.1104/pp.76.2.545
  19. Schloss, J. V., Van Dyk, D. E., Vasta, J. F. and Kutny, R. M. (1985) Purification and properties of Salmonella typhymurium acetolactate synthase isozyme II from Escherichia coli HB101/PDU9. Biochemistry 24, 4952-4959. https://doi.org/10.1021/bi00339a034
  20. Shin, Y. S., Chong, C. K. and Choi, J. D. (1999) Separation and characterization of two forms of acetolactate synthase from etiolated pea seedlings. J. Biochem. Mol. Biol. 32, 393-398.
  21. Singh, B. K., Stidham, M. A. and Shaner, D. L. (1988) Separation and characterization of two forms of acetohydroxyacid synthase from Black Mexican sweet corn cells. J. Chromatography 444, 251-261. https://doi.org/10.1016/S0021-9673(01)94028-2
  22. Yoon, T.-Y., Chung, S.-M., Chang, S.-I., Yoon M.-Y., Han, T.-R. and Choi, J.-D. (2002) Roles of lysine 219 and 255 residues in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun. 293, 433-439. https://doi.org/10.1016/S0006-291X(02)00249-8
  23. Westerfeld, W. W. (1945) A colorimetric determination of blood acetoin. J. Biol. Chem. 161, 495-502.

Cited by

  1. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production byEnterobacter aerogenes vol.10, pp.12, 2015, https://doi.org/10.1002/biot.201500090