• 제목/요약/키워드: affinity binding

검색결과 788건 처리시간 0.021초

제초제(除草劑)에 대한 식물(植物)의 저항성(抵抗性) (Resistance of Plants to Herbicide)

  • 김길웅
    • 한국잡초학회지
    • /
    • 제4권1호
    • /
    • pp.96-106
    • /
    • 1984
  • Changes in weed floras and development of plant resistance to herbicides seemed to be closely related with increased and repeated use of herbicides. Herbicide use increased from 5% of the total consumption of pesticide in 1950 to 45% in 1976 in world basis. About 200 herbicides have been introduced to agriculture so as to control about 206 weed species which have been recorded important to human beings. In Korea, there was about 351 times in increased use of herbicides from 1966 to 1982. Interspecific selection by herbicide is mainly responsible for changes in weed floras and resulted in varying tolerance or susceptibility to herbicides, together with the changes of agricultural practices. The present trend toward continuous cereal cultivation throughout world will lead to type of changes in weed floras favorable to therophyte which can survive under unfavorable conditions as seeds rather than the types of geophyte which can survive unfavorable seasons as buds placed below soil surface. However, geophyte such as Sagitaria pygmaea, and Scirpus jurtcoides, and Cyperus rotundus and Cynodon dactylon in temperate warm climate become severe paddy weeds, presumably because of the removal of annual weeds by herbicides. Since differential tolerance to 2,4-D was firstly reported in Agrostis stolofera, about 30 species of weeds in 18 genera are presently known to have developed resistance to triazine herbicides. Resistance of weed biotypes to triazine herbicide is not mainly due to limited absorption and translocation or to the difference in metabolism, but is the result of biochemical changes at the site of metabolic activity, such as a loss of herbicide affinity for triazine binding site in the photosystem II complex of the chloroplast membrane. Genetical study showed that plastid resistance to triazine was wholly inherited through cytoplasmic DNA in the case of Brassica campestris. Plant tissue culture method can be utilized as an alternate mean of herbicide screening and development of resistance variants to herbicides as suggested by Chaleff and Parsons. In this purpose, one should be certain that the primary target process is operational in cell culture. Further, there are a variety of obstacles in doing this type of research, particularly development of resistance source and it's regeneration because cultured cells and whole plants represent different developmental state.

  • PDF

$^{111}In$-Pentetreotide 스캔으로 진단 가능했던 가스트린종을 가진 Zollinger-Ellison 증후군 1예 (A Case of Zollinger-Ellison Syndrome with Gastrinoma Localized by $^{111}In$-Pentetreotide Scan)

  • 정현조;류진숙;김재승;문대혁;정훈용;하현권;이희경
    • 대한핵의학회지
    • /
    • 제33권6호
    • /
    • pp.537-542
    • /
    • 1999
  • In patient with Zollinger-Ellison syndrome, it is difficult to localize gastrinoma because the tumor is frequently small and multiple. However, accurate localization of the tumor is important for the treatment Among various imaging modalities, somatostatin receptor scintigraphy (SRS) has been recognized to be the most sensitive tool for the detection of neuroendocrine tumors such as gastrinomas based on the presence of high-affinity binding sites for somatostatin. Recently, we experienced a case of Zollinger-Ellison syndrome caused by gastrinomas which was localized by SRS. This is the first case report of gastrinoma detected by SRS in Korea. SRS can facilitate tumor detection in patient with Zollinger-Ellison syndrome and should be considered as the first-line diagnostic method in the early course of the disease.

  • PDF

Defining B Cell Epitopes of Ovalbumin for the C57BL/6 Mice Immunized with Recombinant Mycobacterium smegmatis

  • Kim, Hyo-Joon;Lee, Yang-Min;Hwang, Joon-Sung;Won, Ho-Shik;Kim, Bok-Hwan
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.461-467
    • /
    • 1999
  • Recombinant Mycobacterium smegmatis expressing ovalbumin was used to immunize C57BL/6(H-$2^b$) mice, and the humoral immunity against recombinant ovalbumin was analyzed. Antibodies were purified by denatured ovalbumin-conjugated affinity chromatography. The epitopes of the antibodies were screened with a random peptide library displayed on the tip of fUSE5 filamentous phage pIII minor coat proteins. Two peptides, IRLADR and SPGAEV, were selected predominantly by the recognition of purified antibodies using biopanning methods. The composition of the peptide sequence with the primary structure of OVA revealed that the peptide sequence analogizes to INEAGR, part of the $^{323}ISQAVHAAHAEINEAGR^{339}$ sequence previously reported as the antigenic determinant for murine Band also Th cell epitopes (I-$A^d$ binding). Also, the structures of these mimotopes obtained from restrained molecular dynamic computations resulted in the formation of a $\beta$-turn proven to be a secondary structure of the parent peptide within the ovalbumin molecule, enabling us to confirm the structural similarity. This study demonstrates that immunization with recombinant M. smegmatis can generate neutralizing antibodies identical with those induced by the administration of natural antigenic proteins and supports the potential use of mycobacteria as vaccine delivery vehicles.

  • PDF

Antitumor Toxic Protein Abrin and Abrus Agglutinin

  • Liu, Chao-Lin;Lin, Jung-Yaw
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.109-115
    • /
    • 2001
  • Abrus agglutinin was purified from the kernels of Abrus precatorius by Sepharose 4B affinity column chromatography followed by Sephadex G-100 gel filtration column chromatography. About 1.25 g of abrus agglutinin was obtained from 1 kg of the kernels. The LD$_{50}$ of abrus agglutinin is 5 mg/kg of body weight, which is less toxic than that of abrin, 20$\mu\textrm{g}$/kg body weight. The amino acid sequence of abrus agglutinin was determined by protein sequencing techniques and deduced from the nucleotide sequence of a cDNA clone encoding full length of abrus agglutinin. There are 258 residues, 2 residues and 267 residues in the A-chain, the linker peptide and the B-chain of abrus agglutinin, respectively. Abrus agglutinin had high homology to abrin-a (77.8%). The 13 amino acid residues involved in catalytic function, which are highly conserved among abrin and ricin, were also conserved within abrus agglutinin. The protein synthesis inhibitory activity of abrus agglutinin ($IC_{50}$/ = 3.5 nM) was weaker than that of abrin-a (0.05 nM). By molecular modeling followed by site-directed mutagenesis showed that Pro199 of abrus agglutinin A-chain located in amphipathic helix H and corresponding to Asn200 of abrin A-chain, can induce bending of helix H. This bending would presumably affect the binding of abrus agglutinin A-chain to its target sequence GpApGpAp, in the tetraloop structure of 285 r-RNA subunit and this could be one of major factors contributing to the relatively weak protein synthesis inhibitory activity and toxicity of abrus agglutinin.n.

  • PDF

Novel Phage Display-Derived H5N1-Specific scFvs with Potential Use in Rapid Avian Flu Diagnosis

  • Wu, Jie;Zeng, Xian-Qiao;Zhang, Hong-Bin;Ni, Han-Zhong;Pei, Lei;Zou, Li-Rong;Liang, Li-Jun;Zhang, Xin;Lin, Jin-Yan;Ke, Chang-Wen
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.704-713
    • /
    • 2014
  • The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.

The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

  • Lu, Xinyao;Wang, Guangsheng;Feng, Yue;Liu, Song;Zhou, Xiaoman;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1701-1707
    • /
    • 2016
  • Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this N-terminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Superoxide Dismutase Isoenzyme Activities in Plasma and Tissues of Iraqi Patients with Breast Cancer

  • Hasan, Hathama Razooki;Mathkor, Thikra Hasan;Al-Habal, Mohammed Hasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2571-2576
    • /
    • 2012
  • Breast cancer is the first of the most common ten cancers in Iraq. Its etiology is multifactorial, oxidative stress and lipid peroxidation being suggested to play important roles in carcinogenesis. The purpose of this study was to investigate the oxidant-antioxidant status in breast cancer patients, by measuring SOD isoenzyme activities (total SOD, CuZn-SOD, Mn-SOD and EC-SOD) in plasma and breast tumors, and by estimating thiobarbituric reactive substances (TBRS) in tissue homogenates. General increase in total SOD activity was observed in plasma and tissue samples of breast tumors, greater in the malignant when compared to benign group (p<0.05). Mn-SOD showed a significant decrease in tissue malignant samples (p<0.05), and insignificant decrease in plasma malignant samples compared with control and benign samples. Plasma EC-SOD activity in both patient benign and malignant breast tumors demonstrated 3.5% and 22.8% increase, respectively. However, there was a decrease in tissue EC-SOD activity in malignant breast tumors when compared with benign. A similar tendency was noted for TBRS. We suggest that elevated total SOD might reflect a response to oxidative stress, and then may predict a state of excess reactive oxygen species in the carcinogenesis process. If there is proteolytic removal of the heparin binding domain, EC-SOD will lose its affinity for the extracellular matrix and diffuse out of the tissue. This will result in a decreased EC-SOD activity, thus leading to an increase in the steady-state concentration of $O^{2-}$ in this domain, and increase in EC-SOD activity in the extracellular fluid. This might explain the results recorded here concerning the decrease in tissue EC-SOD activity and increase in plasma of breast cancer patients.

Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee;Lee, Dae-Hee;Park, Yong-Cheol;Lee, Mi-Gi;Kim, Dae-Ok;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.248-254
    • /
    • 2008
  • Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.

Effects of Structural Difference of Ionic Liquids on the Catalysis of Horseradish Peroxidase

  • Hong, Eun-Sik;Park, Jung-Hee;Yoo, Ik-Keun;Ryu, Keun-Garp
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.713-717
    • /
    • 2009
  • The dependence of the catalytic properties of horseradish peroxidase on the structural changes of ionic liquids was investigated with two water-miscible ionic liquids, N-butyl-3methypyridinium tetraftuoroborate ([$BMP_y$][$BF_4$]) and 1-butyl-3-methylimidazolium methylsulfate ([BMIM][$MeSO_4$]), each of which shares an anion ($BF_4^-$) or a cation ($BMIM^+$) with 1-butyl-3-methylimidazolium tetraftuoroborate ([BMIM][$BF_4$]), respectively. The oxidation of guaiacol (2-methoxyphenol) with $H_2O_2$was used as a model reaction. In order to minimize the effect of solution viscosity on the kinetic constants of the enzymatic catalysis, the enzymatic reactions for the kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. Similarly to the previously reported results for [BMIM][$BF_4$], as the concentration of [$BMP_y$][$BF_4$] increased, the $K_m$value increased with a decrease in the $k_{cat}$value: the $K_m$value increased markedly from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to the enzyme. On the contrary, [BMIM][$MeSO_4$] decreased the Km value to 1.4 mM in 25% (v/v) ionic liquid. [BMIM][$MeSO_4$] also decreased $k_{cat}$more than 3-folds [from 13.8 $s^{-1}$in 100% water to 4.1 $s^{-1}$in 25% (v/v) ionic liquid]. These results indicate that the ionic liquids interact with the enzyme at the molecular level as well as at a macroscopic thermodynamic scale. Specifically, the anionic component of the ionic liquids influenced the catalysis of horseradish peroxidase in different ways.