• Title/Summary/Keyword: affine homogeneous domain

Search Result 4, Processing Time 0.039 seconds

NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH

  • Choi, Yun-Cherl
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1301-1324
    • /
    • 2006
  • The affine homogeneous hypersurface in ${\mathbb{R}}^{n+1}$, which is a graph of a function $F:{\mathbb{R}}^n{\rightarrow}{\mathbb{R}}$ with |det DdF|=1, corresponds to a complete unimodular left symmetric algebra with a nondegenerate Hessian type inner product. We will investigate the condition for the domain over the homogeneous hypersurface to be homogeneous through an extension of the complete unimodular left symmetric algebra, which is called the graph extension.

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.485-498
    • /
    • 2005
  • In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

ASYMPTOTIC FOLIATIONS OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • Jo, Kyeonghee
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.165-173
    • /
    • 2017
  • In this paper, we prove that the automorphism group of a quasi-homogeneous properly convex affine domain in ${\mathbb{R}_n}$ acts transitively on the set of all the extreme points of the domain. This set is equal to the set of all the asymptotic cone points coming from the asymptotic foliation of the domain and thus it is a homogeneous submanifold of ${\mathbb{R}_n}$.

AFFINE HOMOGENEOUS DOMAINS IN THE COMPLEX PLANE

  • Kang-Hyurk, Lee
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.643-652
    • /
    • 2022
  • In this paper, we will describe affine homogeneous domains in the complex plane. For this study, we deal with the Lie algebra of infinitesimal affine transformations, a structure of the hyperbolic metric involved with affine automorphisms. As a consequence, an affine homogeneous domain is affine equivalent to the complex plane, the punctured plane or the half plane.