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ASYMPTOTIC FOLIATIONS OF QUASI-HOMOGENEOUS

CONVEX AFFINE DOMAINS

Kyeonghee Jo

Abstract. In this paper, we prove that the automorphism group of a

quasi-homogeneous properly convex affine domain in Rn acts transitively
on the set of all the extreme points of the domain. This set is equal to the

set of all the asymptotic cone points coming from the asymptotic foliation

of the domain and thus it is a homogeneous submanifold of Rn.

1. Introduction

A quasi-homogeneous affine domain is an open subset Ω of Rn which has a
compact subset K ⊂ Ω and a subgroup G of Aut(Ω) < Aff(n,R) such that
GK = Ω. Sometimes we say that G acts on Ω syndetically in this case. An
affine domain Ω is called divisible if there exists a discrete subgroup Γ ⊂ Aut(Ω)
so that Ω/Γ is a compact manifold.

Note that both homogeneous domains and divisible domains are quasi-
homogeneous. There are quasi-homogeneous domains which are neither ho-
mogeneous nor divisible, but those are not so many in some sense. Every
quasi-homogeneous convex affine domain has a very special foliation, an as-
ymptotic foliation, which does not allow quasi-homogeneity to be very far from
homogeneity. Divisible domains are distinguished from quasi-homogenous do-
mains by the fact that their asymptotic foliations consist of just one leaf if they
have no complete line. (This follows from the well-known fact by Vey [4] that
a properly convex divisible domain is a cone.)

Every quasi-homogeneous convex affine domain has the unique maximal lin-
ear cone which can be contained in its interior by translation, we call it the
asymptotic cone of the domain. The leaves of an asymptotic foliation of a
quasi-homogeneous convex affine domain Ω are all cones which are translations
of the interior of the asymptotic cone. We call each cone point of a leaf of the
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asymptotic foliation an asymptotic cone point. The set S(Ω) of all the asymp-
totic cone points of Ω is a topological submanifold of Rn whose codimension is
equal to the dimension of the asymptotic cone. This paper shows that S(Ω) is
homogeneous.

The author has proved in [2] that S(Ω) is the set of all the extreme points,
and furthermore S(Ω) is the whole boundary of Ω and Aut(Ω) acts transitively
on the boundary if Ω is a strictly convex domain. In this paper, we extend this
result to an arbitrary properly convex domain:

Theorem 1. Let Ω be a properly convex affine domain in Rn and G be a closed
subgroup of Aut(Ω) acting synthetically on Ω. Then G acts transitively on the
set S(Ω) of all the asymptotic cone points of Ω.

From this theorem, we see that the dimension of the Lie group Aut(Ω) is at
least of n− dim AC(Ω), which is nonzero if Ω is not a cone.

For quasi-homogeneous convex affine domain Ω which is not properly convex,
i.e., when Ω has a complete affine line, there is a natural number k such that
Ω = Rk × Ω′. In this case, Aut(Ω) acts transitively on Rk × S(Ω′).

2. Hilbert metric

A convex affine domain Ω is called properly convex if it does not contain
any complete line. We can define on any properly convex affine domain a
complete continuous metric which is invariant under the action of Aut(Ω) =
{g ∈ Aff(n,R) | g(Ω) = Ω}, the group of affine automorphisms of Ω. This
metric is called the Hilbert metric and denoted by dH.

Definition 2. Let Ω be a properly convex domain in Rn. For any two different
points p1, p2 ∈ Ω, we define dH(p1, p2) to be the logarithm of the absolute value
of the cross ratio of (s1, p1, p2, s2), where s1 and s2 are the points in which the
line ←−→p1p2 intersects ∂Ω such that p1 lies in the line segment s1p2. For p1 = p2,
we define dH(p1, p2) = 0.

Here the cross ratio of (s1, p1, p2, s2) is defined by

(p2 − s1)(s2 − p1)

(p1 − s1)(s2 − p2)
.

If one of s1 and s2 is an infinite boundary, i.e., one of them is not in Rn, then
the two terms containing it are cancelled.

Since every properly convex affine domain is projectively equivalent to a
bounded convex domain and the cross ratio is invariant by projective transfor-
mations, we may use such bounded domains in calculating the Hilbert metric
to avoid the case that s1 or s2 is contained in the infinite boundary.

Now let’s see the action of Aut(Ω) on Ω.

Proposition 3 (Jo, [2]). Let Ω be a properly convex affine domain in Rn and
G be a closed subgroup of Aff(n,R) preserving Ω. Then G acts properly on Ω
and each G-orbit is a closed subset of Ω.
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The Hilbert metric dH on a properly convex domain Ω descends to the orbit
space G\Ω if G is a closed subgroup of Aut(Ω) by Proposition 3, i.e., we obtain
a metric dG on the orbit space G \ Ω as follows:

(2.1) dG(Gx,Gy) = inf
g,g′∈G

dH(gx, g′y).

Since dH is invariant by projective automorphism, we have

dG(Gx,Gy) = inf
g∈G

dH(x, gy).

We can also prove that the distance between the two orbits Gx and Gy is
realized by the Hilbert distance between two points x0 ∈ Gx and y0 ∈ Gy in
Ω.

Lemma 4 (Jo, [2]). Let G be a closed subgroup of Aff(n,R). Then for each pair
(Gx,Gy) ∈ G \ Ω, there exists gx,y ∈ G such that dG(Gx,Gy) = dH(x, gx,yy).

3. Asymptotic foliation

Every quasi-homogeneous convex affine domain contains a cone invariant
under the action of linear parts of their automorphism groups, which is called
an asymptotic cone. This terminology was originally introduced by Vey in [4].

Definition 5. Let Ω be a convex domain in Rn. The asymptotic cone of Ω is
defined as follows:

AC(Ω) := {u ∈ Rn |x+ tu ∈ Ω for all x ∈ Ω, t ≥ 0}.

By the convexity of Ω, for any x0 ∈ Ω,

AC(Ω) = ACx0
(Ω) := {u ∈ Rn |x0 + tu ∈ Ω for all t ≥ 0}.

Even though the asymptotic cone AC(Ω) of a properly convex affine domain
Ω is possibly empty, but it is nonempty if Ω is quasi-homogeneous, thanks to
the following lemma:

Lemma 6 (Jo, [2]). Let Ω be a quasi-homogeneous properly convex affine do-
main in Rn. Then Ω is not bounded and the boundary ∂Ω does not have any
bounded face with dimension k > 0.

Note that AC(Ω) is a properly convex closed cone in Rn if Ω is properly
convex. We will denote the interior of AC(Ω) relative to its linear span by
AC◦(Ω).

Remark 7. We see the following facts immediately.

(i) The asymptotic cone of Ω is the maximal closed cone which can be
contained in Ω.

(ii) AC(Ω), the closure of the asymptotic cone in RPn, is a convex hull of
the union of the origin o and the infinite boundary ∂∞Ω ⊂ ∂Rn, when
AC(Ω) is considered as a projective domain.
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Divisible domains are special class of quasi-homogeneous domains. The as-
ymptotic cone AC(Ω) of a divisible convex domain Ω equals Ω if Ω does not
have any complete line, which is an immediate consequence of the following
result:

Theorem 8 (Vey, [4]). A divisible properly convex affine domain is a cone.

The following theorem, which was proved in [2], is very important to under-
stand quasi-homogeneous domains.

Theorem 9 (Jo, [2]). Let Ω be a properly convex quasi-homogeneous affine
domain in Rn. Then Ω admits a parallel foliation by cosets of the asymptotic
open cone AC◦(Ω) of Ω.

Let L be the linear span of AC(Ω), i.e., the linear subspace of Rn which
is generated by AC(Ω), and Ωx the intersection of Ω and the affine subspace
x+L, i.e., Ωx = Ω∩(x+L). Then Theorem 9 implies that Ωx is the translation
of AC◦(Ω) for all x ∈ Ω. That is, there exists a continuous map s : Ω → ∂Ω
such that Ωx = AC◦(Ω) + s(x) for each x ∈ Ω. Note that S(Ω) is a proper
subset of ∂Ω if AC is not 1-dimensional.

Definition 10.

(i) We call the foliation of a properly convex quasi-homogeneous domain
Ω by cosets of AC◦(Ω) the asymptotic foliation of Ω.

(ii) We call p ∈ ∂Ω an asymptotic cone point of a properly convex affine
domain Ω if p is a cone point of Ωx for some x ∈ Ω, that is, p = s(x)
for some x ∈ Ω.

We see that S(Ω), the set of all the asymptotic cone points of Ω, is an
Aut(Ω)-invariant set. Actually S(Ω) is the set of all the extreme points of Ω
in Rn:

Proposition 11 (Jo, [2]). Let Ω be a quasi-homogeneous properly convex affine
domain in Rn. Then S(Ω) is equal to the set of all the extreme points of Ω,
and the set of all the infinite extreme points is the set of all the extreme points
of the infinite closed face

∂∞Ω = Ω ∩ RPn−1∞ = AC(Ω) ∩ RPn−1∞ ,

when we see Ω as a subset of RPn, where RPn−1∞ = RPn−1 \ Rn = ∂Rn.

Example 12. Let Ω = {(x, y, z) ∈ R3 | y > x2, z > 0}. Then Ω is homogeneous
and AC and S(Ω) are as follows :

AC◦(Ω) = {(0, y, z) ∈ R3 | y > 0, z > 0},

S(Ω) = {(x, y, 0) ∈ R3 | y = x2}.
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By Theorem 9, the leaves of its asymptotic foliation are all translations of this
cone AC◦(Ω). Actually for each p = (x0, y0, z0) ∈ Ω the leaf containing p is

Ωp = {(x0, x20 + y, z) ∈ R3 | y > 0, z > 0}
= (x0, x

2
0, 0) + {(0, y, z) ∈ R3 | y > 0, z > 0}

= s(p) + {(0, y, z) ∈ R3 | y > 0, z > 0}.

That is, any intersection of Ω and a plane parallel to yz-plane is {(x0, x20+y, z) ∈
R3 | y > 0, z > 0} for some x0 ∈ R.

Let Lin(Ω) be the image of Aut(Ω) by the canonical homomorphism from
Aff(n,R) to GL(n,R). Then Lin(Ω) preserves AC(Ω) since AC(Ω) is the maxi-
mal closed cone which can be contained in Ω. So the restriction map of Lin(Ω)
to the linear span L of AC(Ω) becomes a subgroup G of Aut(AC(Ω)) < GL(L).
Obviously G acts on AC◦(Ω) transitively if Ω is homogeneous.

Theorem 13 (Jo, [2] and [3]). Let Ω be a quasi-homogeneous properly convex
affine domain in Rn. Then

(i) AC◦(Ω) is (quasi)-homogeneous if Ω is (quasi)-homogeneous,
(ii) AC(Ω) is one-dimensional if and only if Ω is strictly convex,
(iii) Aut(Ω) acts transitively on ∂Ω if Ω is strictly convex,
(iv) S(Ω) = ∂Ω if and only if Ω is strictly convex,
(v) Ω is affinely equivalent to an n-dimensional paraboloid if and only if it

is strictly convex.

4. Proof of Theorem 1

We have seen in the previous section that Aut(Ω) acts transitively on S(Ω) =
∂Ω if AC(Ω) is one-dimensional. Actually we can prove that Aut(Ω) acts
transitively on S(Ω) for any quasi-homogeneous properly convex affine domain
Ω, which is exactly Theorem 1.

Proof of Theorem 1. It suffices to prove the present theorem for the case that
the dimension of AC(Ω) is at least 2, thanks to Theorem 13. By Theorem 9,
there exist a continuous map s : Ω→ S(Ω) ⊂ ∂Ω and an one parameter group
of homeomorphisms of Ω with the following equation:

ct(x) = s(x) + et(x− s(x)) for t ∈ R, x ∈ Ω.

Note that dH

(
ct(x), ct(y)

)
= dH(x, y) if s(x) = s(y). We will show first that ct

is strictly distance decreasing for t > 0 if x and y are not in the same leaf of the
asymptotic foliation, that is, for any two points x, y ∈ Ω such that s(x) 6= s(y)

dH

(
ct(x), ct(y)

)
< dH(x, y) for all t > 0.

Let V be a 2-dimensional linear subspace of the linear span L of AC(Ω),
which is generated by vx = x − s(x) and vy = y − s(y). Then V ∩ AC(Ω) is
affinely equivalent to a quadrant and thus it is bounded by two rays r1 and r2.
Let l be the line connecting x and y and l′ be the line connecting two points
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ct(x) = s(x) + etvx and ct(y) = s(x) + etvy. Then both l and l′ lie in the
3-dimensional affine subspace s(x) + W of Rn, where W is the 3-dimensional
linear subspace of Rn generated by three linearly independent vectors

s(y)− s(x), vx, vy.

Note that (s(x) + W ) ∩ Ω is the 3-dimensional section of Ω and it has a 2-
dimensional asymptotic foliation whose leaves are parallel translation of V ∩
AC(Ω), even though it may not be quasi-homogeneous.

If we consider the line lV connecting vx and vy in V , lV intersects the
boundary rays r1 and r2 at

η1 = µ1vx + (1− µ1)vy

and

η2 = µ2vx + (1− µ2)vy

for some two real numbers µ1, µ2. Note that µ1, µ2 could be ∞ or −∞ in
case that lV doesn’t meet one of two rays r1 and r2. We may assume that
µ1 < 0 < 1 < µ2 by exchanging the name of the rays r1 and r2 if necessary,
because either µ1 < 0 < 1 < µ2 or µ2 < 0 < 1 < µ1 holds depending only upon
the relative position of vx and vy (see Figure 1).

Figure 1. Case of µ1 < 0 < 1 < µ2

To find boundary points at which l or l′ meets ∂Ω, we parametrize the line
lV and the line lS connecting s(x) and s(y) like this:

vλ = λvx + (1− λ)vy,

sλ = λs(x) + (1− λ)s(y)



ASYMPTOTIC FOLIATIONS 171

(Note that vµ1
= η1, v0 = vy, v1 = vx, vµ2

= η2 and vλ ∈ AC(Ω) only for
µ1 ≤ λ ≤ µ2).

Then the two points in ∂Ω where the line l intersect are

ξ1 = λ1x+ (1− λ1)y = sλ1 + vλ1

and

ξ2 = λ2x+ (1− λ2)y = sλ2 + vλ2

with real numbers λ1 and λ2 such that µ1 ≤ λ1 < 0 and 1 < λ2 ≤ µ2. This is
because if λ < µ1 or λ > µ2, sλ + vλ is outside of Ω by convexity of Ω. One
can prove µ1 < λ1 or λ2 < µ2 because both sµ1

+ r1 and sµ2
+ r2 cannot meet

Ω simultaneously. (Note that sλ = λs(x) + (1− λ)s(y) is not in Ω if λ < 0 or
λ > 1.) We may assume that µ1 < λ1.

Now we consider the line l′ connecting two points ct(x) = s(x) + etvx and
ct(y) = s(y) + etvy for t > 0. Since vλ1

∈ AC◦(Ω) and vλ2
∈ AC(Ω),

ζ1 = λ1ct(x) + (1− λ1)ct(y)

= (λ1s(x) + (1− λ1)s(y)) + et(λ1vx + (1− λ1)vy)

= sλ1
+ etvλ1

= ξ1 + (et − 1)vλ1

is in Ω for all t > 0, and

ζ2 = λ2ct(x) + (1− λ2)ct(y)

= (λ2s(x) + (1− λ2)s(y)) + et(λ2vx + (1− λ2)vy)

= sλ2
+ etvλ2

= ξ2 + (et − 1)vλ2

is in Ω for all t > 0. Therefore we get two real numbers λ′1, λ
′
2 satisfying

µ1 < λ′1 < λ1 < 0, 1 < λ2 ≤ λ′2 ≤ µ2

such that the line l′ intersects ∂Ω at two points

ξ′1 = λ′1ct(x) + (1− λ′1)ct(y)

= λ′1s(x) + (1− λ′1)s(y) + et(λ′1vx + (1− λ′1)vy)

= sλ′
1

+ etvλ′
1
,

and

ξ′2 = sλ′
2

+ etvλ′
2
.

By an easy calculation, we can finally prove

dH
(
ct(x), ct(y)

)
< dH(x, y) for all t > 0 and x, y ∈ Ω with s(x) 6= s(y).

using λ′1 < λ1 and λ2 ≤ λ′2. (Note that the cross ratio of (ξ1, y, x, ξ2) is equal
to that of (ζ1, ct(y), ct(x), ζ2) and the cross ratio of (ξ′1, ct(y), ct(x), ξ′2) is less
than that of (ζ1, ct(y), ct(x), ζ2).)
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On the other hand, we see that g(Ωx) = Ωgx since AC(Ω) is invariant under
the action of the linear parts of G. This implies

(4.1) s(gx) = gs(x) for all g ∈ G.

Since G is closed in Aff(n,R), G acts on Ω properly by Proposition 3. Now we
can define ct on the orbit space G \Ω by (4.1). In fact, for all g ∈ G and y ∈ Ω

ct(gy) = s(gy) + et(gy − s(gy))

= gs(y) + et(gy − gs(y))

= etgy + (1− et)gs(y)

= g(ety + (1− et)s(y))

= g(s(y) + et(y − s(y))

= gct(y)

since every affine transformation preserves a convex combination. Note that
Lemma 4 implies that there exists gx,y ∈ G such that

(4.2) dG(Gx,Gy) = dH(x, gx,yy),

where dG is defined in (2.1).
It is obvious that for t > 0, the homeomorphism ct of G \ Ω is distance

decreasing. By the way, the fact that G acts on Ω synthetically implies that
G \ Ω is a compact metric space and it is well known that every distance
decreasing surjection from a compact metric space onto itself is an isometry.

Suppose there exists a pair (x, y) such that s(x) 6= gs(y)(= s(gy)) for all
g ∈ G. Then we have

dG(Gx,Gy) = dH(x, gx,yy) > dH

(
ct(x), ct(gx,yy)

)
= dH

(
ct(x), gx,yct(y)

)
and this implies

dG(Gx,Gy) > dG

(
ct(Gx), ct(Gy)

)
,

which is a contradiction. Therefore we can conclude that for any pair (x, y),
there is g ∈ G such that s(x) = gs(y), which completes the proof. �

The following is an immediate consequence of Theorem 1, since S(Ω) is equal
to the set of all the extreme points of Ω by Proposition 11.

Corollary 14. Let Ω be a properly convex affine domain in Rn and G be a
closed subgroup of Aut(Ω) acting synthetically on Ω. Then G acts transitively
on the set of all the extreme points of Ω.

Remark 15. Theorem 1 implies that the Lie group G is at least of dimension
n − dim AC(Ω), which is nonzero if Ω is not a cone. Actually, Aut(Ω) has a
dimension greater than 0 for every quasi-homogeneous convex affine domain,
because positive homotheties are all in the automorphism group of a cone.
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