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DIFFERENTIABILITY OF QUASI-HOMOGENEOUS
CONVEX AFFINE DOMAINS

KYEONGHEE JO

ABSTRACT. In this article we show that every quasi-homogeneous
convex affine domain whose boundary is everywhere differentiable
except possibly at a finite number of points is either homogeneous
or covers a compact affine manifold. Actually we show that such
a domain must be a non-elliptic strictly convex cone if it is not
homogeneous.

1. Introduction

An affinely flat manifold M is a manifold which is locally modelled
on the affine space with its natural affine geometry, i.e., M admits a
cover of coordinate charts into the affine space R™ whose coordinate
transitions are affine transformations. By an analytic continuation of
coordinate maps from its universal covering M, we obtain a develop-
ing map from M into R™ and this map is rigid in the sense that it is
determined only by a local data. Therefore the deck transformation
action on M induces the holonomy action via the developing map by
the rigidity. (see [3, 8, 9], etc for more details.) More generally, An
(X, G)-manifold is a manifold which is locally modelled on X with the
geometry determined by the Lie group G acting on X analytically. For
example, projectively flat manifold is a special case of (X, G)-manifold
with X = RP" and G = PGL(n+1,R) and so is an affinely flat manifold
with X = R", the standard Euclidean space and G = Aff(n), the group
of affine transformations on R™. An affinely flat manifold also can be
viewed as a projectively flat manifolds whose holonomy preserves the
points at infinity, RP% !, by identifying R™ with the affine space given
by Zp41 = 1 in R™*! so that RP™ becomes a compactification of R™.
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From the definition of (X, G)-manifold, we get obviously that the
developing image € of a closed (X, G)-manifold is a quasi-homogeneous
domain in X, i.e., ) is an open subset of X which has a compact sub-
set K of 2 and a subgroup H of Aut(2) < G such that HK = Q (in
this case, we say sometimes that H acts on Q syndetically). So the
quasi-homogeneous domain theory is important to understand (X, G)-
manifolds, particularly when the developing map is a diffeomorphism
onto the developing image . For examples, the class of convex affine
(projective, resp.) manifolds is a subclass of affinely (projectively, resp.)
flat manifolds whose developing maps are diffeomorphisms onto convex
domains. So the study of compact convex affine manifolds is equiva-
lent to that of divisible convex affine domains and their automorphism
groups. Here a divisible affine domain is a domain of R™ whose auto-
morphism group contains a cocompact discrete subgroup acting prop-
erly. Note that the set of divisible domains is a subclass of the set of
quasi-homogeneous domains as the set of homogeneous domains is so.

In this viewpoint we investigated quasi-homogeneous affine (respec-
tively, projective) domains in [4, 5, 6]. More precisely, we studied two
questions : (i) which quasi-homogeneous convex affine domain can cover
a compact affine manifold? (in other words, which quasi-homogeneous
convex affine domain is divisible?) (ii) how many quasi-homogeneous
domains are there other than homogeneous domains? (that is, we want
to find out all shapes of quasi-homogeneous domains.)

From the results of those previous papers, we could see that the dif-
ferentiability of the boundary is closely related to the quasi-homogeneity
and homogeneity of a domain and there seems to be just a little quasi-
homogeneous domains which are not homogeneous. Actually it seems
that every irreducible (see [6] for a definition) quasi-homogeneous convex
affine domain is either homogeneous or divisible.

In this article, we get an answer of these two questions for convex
affine domains whose boundaries are everywhere differentiable except
possibly at a finite number of points : by finding out all their shapes,
we will show that such a domain is homogeneous if is not a strictly
convex quasi-homogeneous cone. Note that any strictly convex quasi-
homogeneous cone which is not an elliptic cone is non-homogeneous even
if its boundary is everywhere continuously differentiable except cone
point. And furthermore we will show that it is true in this case that
every quasi-homogeneous domain is either homogeneous or divisible.
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2. Quasi-homogeneous convex projective domains

To study affine domains, sometimes it is useful to look at them in
the projective space RP® = (R™*!\ {0})/R*, where R* = R\ {0} be-
cause of the compactness of RP" and PM(n + 1,R). Remind that a
domain in R™ can be viewed as a domain in RP" whose automorphism
group preserves the set of points at infinity, RIP’Z’O_l, by identifying R™
with the affine space given by z,+1 = 1 in R**1. Since PM(n + 1,R),
which is the projectivization of the group of all (n + 1) by (n + 1)
matrices, is a compactification of PGL(n + 1,R), any infinite sequence
of non-singular projective transformations contains a convergent subse-
quence. Note that the limit projective transformation may be singular
in general. For a singular projective transformation g we will denote
the projectivization of the kernel and the range of g by K(g) and R(g).
Then g maps RP" \ K(g) onto R(g) and the images of any closed set
in RP" \ K(g) under the convergent sequence g;, converges uniformly to
the images under the limit transformation g of g; (See [1]).

An open subset 2 of RP™ is called convex if there exists an affine
space H C RP" such that €2 is a convex affine subset of H. A convex
domain €2 in RP" is called properly convex if there is no non-constant
projective map of R into Q and strictly convex if 0€) has no line segment.
From this definition we see that any strictly convex domain is a properly
convex domain.

The following definitions are originally introduced by Benzécri in [1].

DEFINITION 1. Let Q be a properly convex projective domain of RP".

(1) A face of Q is an equivalence class with respect to the equivalence
relation given as follows:
(a) z ~ y if £ # y and © has an open line segment ! containing
both = and y.
b)) z~yifz=y.
(ii) The support of a face F', which will be denoted by (F), is the
projective subspace generated by F.
(iii) Zero dimensional faces are called extreme points. Note that p is an
extreme points if and only if there is no open line segment which
lies in 60 entirely and contains p. (When we consider ) as a
convex affine domain by choosing an affine space containing 2, we
can say that p € 911 is an extreme point if it cannot be expressed
as the convex combination of any two points in 952.)
(iv) Q is called a conver sum of its faces ; and 3, which will be
denoted by Q = Q1+Qq, if (Q1) N (Q22) = @ and  is the union
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of all open line segments joining points in 21 to points in Q.
Note that if the dimensions of 2, ©; and Qs are n, k; and ko,
respectively, then n = k1 + k2 + 1. In this case, we say sometimes
that 2 is a convex sum of its closed faces ©; and Q5 and denote it
by @ = Q;4+8,, where a closed face is the closure of a face in its
support.

From the definition, we see that a face is a convex subset of  which
is open in its support and {2 is a disjoint union of faces.
Now we state some useful lemma and theorems.

LEMMA 2. Let Q) be a quasi-homogeneous properly convex domain
in RP"and G a subgroup of Aut(?) acting on 2 syndetically. Then for
each point p € 9, there exists a sequence {g;} C G and z € Q such
that g;(x) converges to p. Furthermore for any accumulation point g of
{g:} in PM(n + 1,R), R(g) is the support of the face containing p and
K(g)NQ =0 and K(g)NQ # 0.

Proof. See Lemma 3.2 of [4]. O

THEOREM 3. Let §2 be a properly convex quasi-homogeneous projec-
tive domain in RP™. Then the following are satisfied.

(i) Suppose Q = Q3+8s. Then ) is homogeneous (respectively, quasi-
homogeneous) if and only if Q; is homogeneous (respectively, quasi-
homogeneous) for i =1,2.

(ii) Suppose the boundary 9 of Q) has a line segment, that is, Q is
not strictly convex. Then §) has a triangular section A.(Here a
section of §) is a nonempty intersection with a projective subspace

of RP™.)
Proof. See [1] or Theorem 2.8 and Corollary 2.9 of [4]. O

THEOREM 4. Let ) be a properly convex quasi-homogeneous projec-
tive domain. Then

(i) 2 is a simplex if it is a polyhedron.
(ii)  is an ellipsoid if its boundary is twice differentiable.
(iii) Q is homogeneous if its boundary is everywhere twice differentiable
except possibly at a finite number of points.

Proof. See Proposition 5, Theorem 6 and Theorem 7 of [5]. a
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3. Quasi-homogeneous convex affine domains

From the definition, it is obvious that every quasi-homogeneous affine
domain is a quasi-homogeneous projective domain. But some affine do-
mains in R™ are not quasi-homogeneous as affine domains even though
they are quasi-homogeneous as projective domains. For a simple ex-
ample, a triangle is not a quasi-homogeneous affine domain but a quasi-
homogeneous projective domain. In fact any bounded affine domain can-
not be a quasi-homogeneous affine domain (for a proof see [1]). Note that
a quadrant (that is, {(z,y) € R?|z > 0,y > 0}) is a quasi-homogeneous
affine domain which is projectively equivalent to a triangle even though
they are not affinely equivalent. More complicated examples are strictly
convex quasi-homogeneous projective domains whose boundaries are not
twice differentiable (for details, see [3, 7, 11] as mentioned in the intro-
duction). For this reason, we have been using the terminologies ‘quasi-
homogeneous affine domain’ and ‘quasi-homogeneous projective domain’
to avoid ambiguity and from now on we will denote the group of all
affine transformations preserving Q2 by Aut,s(€2). We usually denote
the boundary of a domain Q by 92, but sometimes we will also use the
notation 9,2 for the boundary of Q as a subset of R™ and 9,02 for the
boundary of 2 as a subset of RP™ when it is necessary to avoid ambi-
guity. We call them an affine boundary and a projective boundary of
an affine domain (2, respectively. Note that 0,(2 is a subset of 0,2 and
in fact 9,02 = R™ N 9,€2. We will use 0,2 for the infinite boundary in
RP", that is, 0,2 = QNRPL ! = 92N RPY! = pQ — 8,2, where Q
is the closure of Q in RP". (In this article we will not denote by 2 the
closure of Q2 in R™ even if Q is in R™.)

EXAMPLE 5. Let Q = {(z,y) |z > 0,y > 0} C R%. Then
Q= {[z,y,1] |z > 0,y > 0} C RP?

when it is considered as a projective domain and the following are sat-
isfied.

0,0 = {(,0)|z > 0} U{(0,y) |y > 0} C R? C RP?
00oQ = {[z,,0] |z > 0,y > 0} C RP = RP?\ R?
9, = 0,0 U 0.0 C RP?
= {[z,0,1]|z > 0} U {[0,y,1] |y > 0} U {[z,y,0}| = > 0,y > 0}.

A point of 02 C RP™ can be regarded as a direction parallel to a
half line which is entirely contained in Q. From these observation we can
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see that 0,( is related to the asymptotic cone of €2, which is originally
introduced by Vey in [10], defined as follows.

DEFINITION 6. Let 2 be a convex domain in R™. The asymptotic
cone of () is defined as follows:

ACQY) ={ueR"|z+tueQ, forall z € Q,t >0}
By the convexity of €2, for any zy € €2,
AC(Q) = AC, () :i={u € R |zg + tu € Q, for all t > 0}.

Note that AC(QQ) is a properly convex closed cone in R™ if  is properly
convex. We will denote the interior of AC(f2) relative to its affine hull
by AC°(Q).

REMARK 7. We see the following facts immediately.

(i) The asymptotic cone of €2 is the maximal closed cone which can
be contained in 2.

(ii) AC(Q) is a convex sum of the origin o and 952, that is, AC(Q) =
{0}+052, when AC(2) is considered as a projective domain.

It’s essential in studying quasi-homogeneous affine domains to inves-
tigate the asymptotic cones. The following theorem and proposition was
proved in [4].

THEOREM 8. Let 2 be a properly convex quasi-homogeneous affine
domain in R™. Then Q admits a parallel foliation by cosets of AC°({2)
of (2.

Theorem 8 implies that for each z € € there exists a point s(z) in
its boundary such that Q, = AC°(Q2) + s(z) is a k-dimensional section
of © containing x, where k is the dimension of AC(f2).

DEFINITION 9.

(i) We call the foliation of a properly convex quasi-homogeneous do-

main by cosets of AC°(Q2) the asymptotic foliation of 2.

(ii)) We call p € 0Q an asymptotic cone point of a properly convex
affine domain € if p is a cone point of 2, for some z € €2, that is,
p = s(z) for some z € Q.

(iii) A convex cone C is called a strictly convex cone if every line seg-
ment in 9,9 lies in a ray, where a ray means a half line in C which
starts from the cone point.
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Note that any strictly convex cone is a convex sum of a point set and
a strictly convex projective domain in RP’;O"l, when it is considered as
a projective domain. Or equivalently, we can say that every (n — 1)-
dimensional section of a strictly convex cone is a strictly convex domain
if it does not contain the cone point.

ExaMPLE 10. Let Q = {(z,y,2) € R¥|y > 2%,z > 0}. Then Q is
homogeneous and AC°(Q) = {(0,y,2) € R3|y > 0,z > 0}. By Theorem
8, the leaves of its asymptotic foliation are all translations of this cone
AC°(Q). Actually for each p = (zo, yo, z0) € 2 the leaf containing p is

Qp:{(xo,x%+y,z) €R3|y>0,z>0}
= (z0,25,0) + {(0,9,2) € R*|y > 0,2 > 0}
= s(p) + {(0,y,2) €R3|y > 0,2 > 0}.

That is, any intersection of {2 and a plane parallel to yz-plane is {(xo, 3:(2)—4-
y,2) € R3|y > 0,2 > 0} for some zo € R.

ProPOSITION 11. Let Q be a quasi-homogeneous properly convex
affine domain in R™. Let E be the set of all extreme points of ) C RP™
and S the set of all asymptotic cone points s(x). Then

E=SUE,
where Eo, denote the set of all extreme points of
QNRPL ! = AC(Q) NRPY L.

Let Lin(£2) be the image of Aut,#(2) by the canonical homomorphism
from Aff(n,R) to GL(n,R). Then Lin(Q) preserves AC(Q2) since AC(Q)
is the maximal closed cone which can be contained in 2. So the restric-
tion map of Lin(€2) to the affine hull AV of AC(Q2) becomes a subgroup G
of Autag(AC(R2)) < GL(AV). Obviously G acts on AC°(f2) transitively
if 2 is homogeneous. More generally, we can show the following.

PrOPOSITION 12. Let £ be a properly convex affine domain. Then
AC°(Q) is (quasi)-homogeneous if §? is (quasi)-homogeneous.

Proof. 1t suffices to show that the linear part G = Lin(Q) of Aut,g(Q2)
acts on AC°(2) syndetically.

Let Q be a properly convex quasi-homogeneous affine domain and
K be a compact subset of {2 such that Aut,g(Q2)K = Q. Choose a
point zg € K. Then we may assume that s(xg) is the origin. For each
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y € K, K, = KN (s(y) + AC°(Q)) is mapped to a compact subset of
AC°(Q2) = s(xp) + AC°(Q) under the translation by —s(y). Let

K = Uyer(Ky = s(y)).
Then K is a compact subset of AC°(Q) since K is a compact subset of
Q.

Now we show that GK = AC°(Q). For any z € AC°(Q) = s(wo) +
AC°(R2), there exist g = (A,a) € Aut,g() such that g(z) = y € K.
Since s(z) = s(zo) = 0 and g(s(z)) = s(g(2)) = s(y), @ must be s(y). So
A(z) = g(z) — s(y) must be a point in Ky — s(y) and thus in K. This
complete the proof because A € G. a

I

The above proposition together with Remark 7 (ii) and Theorem 3
(i) implies that the relative interior of 0,f2 is a (quasi)-homogeneous
projective domain if  is (quasi)-homogeneous.

LEMMA 13. Let 2 be a quasi-homogeneous properly convex affine
domain in R™. Aut,g({2) fixes a point £ € R™. Then ) is a cone with
cone point €.

Proof. Suppose there is an extreme point p € 9,9 such that p # £.
(Note that it follows from Proposition 4 of Vey [10] that £ must be a
boundary point of €. But this is not necessary to proceed with our
argument.) Then there exists a sequence {g;} C Aut,g(2) and z € Q
such that g;(z) converges to p by Lemma 2. We may assume that there
is a singular projective transformation g € PM(n + 1,R) such that {g;}
converges to g. Then since p is an extreme point of 2, R(g) = {p} by the
second statement of Lemma 2 and K(g) NR™ = @) by Lemma 3.5 of [4].
So gn(x) converges to p for all x in R™ as n goes to co. But g,(§) cannot
converges to p because g,(£) = £. This contradiction implies that any
point p € 9,1 is not an asymptotic point of Q by Proposition 11 if it is
not £&. But by Theorem 8 there must be at least one asymptotic cone
point of  and so £ is a unique asymptotic cone point. Therefore we
conclude that Q is a cone with a cone point £ by Theorem 8 again. [J

4. Differentiability and homogeneity of domains

In this section, we study relationship between the homogeneity, quasi-
homogeneity and the differentiability of convex affine domains.

In [4] we studied the differentiability of quasi-homogeneous strictly
convex projective domains : any quasi-homogeneous strictly convex pro-
jective domain € in RP™ has a continuously differentiable boundary and
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it must be an ellipsoid if 02 is twice differentiable. Furthermore such
a quasi-homogeneous strictly convex domain Q fails to be twice dif-
ferentiable on a dense subset and has a discrete automorphism group
Aut(Q) and so cannot be homogeneous if it is not an ellipsoid. (This
was also proved independently by Y. Benoist in [2].) It is well known
that there exist infinitely many such non-homogeneous strictly convex
quasi-homogeneous projective domains (see [3, 7, 11]).

In [5] we studied that under which condition on the differentiability of
their boundaries quasi-homogeneous projective domains must be homo-
geneous. More precisely, as stated in Theorem 4, we showed that every
convex quasi-homogeneous projective domain whose boundary is every-
where twice differentiable except possibly at a finite number of points
is homogeneous, which is a generalization of the 2-dimensional result of
Vinberg and Kats [11].

Affine domains, as a special subclass of projective domains, seem to be
quite different from projective domains. For example, there is no strictly
convex quasi-homogeneous affine domain which is not homogeneous : we
already showed in [4] that an n- paraboloid

{(z1,72,. ., Tp) ER |z > 23+ 22 + - + 22|}

is the only strictly convex quasi-homogeneous affine domain in R™ up
to affine equivalence. (Observe {(z1,22,...,2,) € R |z, > 2§ + 2 +
-+ + 2P} is strictly convex if p is any positive even integer, but it is
quasi-homogeneous only when p = 2.)

A subset @ of R is called a polyhedral set if Q is the intersection
of a finite number of closed half spaces or = R™. A polyhedral set
is called a simplex cone in R™ if it is a properly convex cone bounded
by n hyperplanes. That is, a simplex cone is a polyhedral set affinely
isomorphic to a domain {(z1,2,...,2,) € R"|z; > 0,4 = 1,2,...,n}.
As an immediate consequence of Theorem 4 (i) we have the following
proposition.

ProprosITION 14. The only quasi-homogeneous polyhedral sets ex-
cept R" are the products of affine subspaces of R™ and simplex cones.

Proof. Let P be a quasi-homogeneous polyhedral set which is not R™.
Then by convexity of P, there is a nonnegative integer k and a (n — k)-
dimensional quasi-homogeneous polyhedral set P’ such that P = R*¥x P’.
P’ is a polyhedron as a projective domain and so it must be a simplex by
(i) of Theorem 4. Since every quasi-homogeneous affine domain cannot
be bounded, RIP’ZO”'C_l must intersect the boundary of P'. But §,P’
cannot have any bounded face with non-zero dimension by Lemma 3.6
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of [4]. So the interior of RP% 51 NP’ relative to RP% %! must be a
maximal face of the simplex P’, which means that P’ is a simplex cone
when it is viewed as an affine domain again. u

As concerns (i) of Theorem 4, the particularity of affine domains
distinguishing from other projective domains leads us to some stronger
result.

THEOREM 15. Let () be a convex quasi-homogeneous affine domain in
R™ whose boundary is differentiable. Then § is homogeneous. Further-
more, ) is affinely equivalent to R¥ x {(z1, 22, ..., Tn_) € R" % |z,_x >
i+ zi+ - +22 , |} forsomek € {0,1,2,...,n— 2}, if it is neither
R™ nor an affine half space.

Proof. Note that affine spaces, affine half spaces and convex affine
domains bounded by paraboloids are all homogeneous. So it suffices to
show the second statement. Assume that €2 is neither R™ nor an affine
half space. If © is not properly convex, then Q = R* x €’ for some
0 < k < n-—1and (n — k)-dimensional properly convex domain
by convexity. Obviously, £’ is a quasi-homogeneous affine domain with
dimension > 2. We fist show that ' is strictly convex. Suppose not,
that is, suppose that 92 has a line segment. Then by Theorem 3, 2 has a
triangular section A. Since A must intersect 2 by definition of a section,
it cannot lie in infinite boundary and thus one of its vertices must be
in R™, which contradicts the hypothesis that 0,2 is differentiable. This
shows that € must be strictly convex. So € is affinely equivalent to
{(z1,22,...,Tn-k) ER" |2yt > 22+ 2%+---+22_,_,} by Theorem
5.9 of [4]. O

REMARK 16. We cannot deduce immediately from (ii) of Theorem
4 that every convex quasi-homogeneous affine domain with twice dif-
ferentiable boundary is affinely isomorphic to a paraboloid, because we
cannot say that its projective boundary is also twice differentiable ev-
erywhere. There are many convex affine domains such that their affine
boundaries are twice differentiable and their projective boundaries are
not twice differentiable at infinite points. But we can prove that there is
no such a convex affine domain if domains are restricted to those which
are quasi-homogeneous.

This theorem implies that any properly convex quasi-homogeneous
affine domain whose boundary is everywhere differentiable is affinely
equivalent to {(z1,z2,...,%n) € R* |z, > 22 + 22 +--- +22_;}. Ob-
serve that the differentiability condition for being homogeneous is a little
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weaken in affine case. Then what can we say for properly convex quasi-
homogeneous affine domains whose boundaries are not differentiable ev-
erywhere? In contrast to (iii) of Theorem 4, we cannot conclude that
a properly convex quasi-homogeneous affine domain whose boundary is
everywhere differentiable except possibly at a finite number of points is
also homogeneous. Instead we get

THEOREM 17. Let Q) be a properly convex quasi-homogeneous affine
domain such that the boundary of 2 is everywhere differentiable except
possibly at a finite number of points. Then (Q is either Rt or {(z,y) €
R*|z >0,y > 0} or {(z1,22,...,%n) ER? |z, > 2} + 2%+ +22_,}
or a strictly convex cone whose boundary is everywhere continuously
differentiable except cone point.

Proof. Since RT, {(z,y) € R?|z > 0,y > 0} and {(z,y) € R?|y >
x?} are the only quasi-homogeneous properly convex affine domains in
R or R? up to affine equivalence, we may assume that Q ¢ R” for n > 3.

From Theorem 15, we see that if 9 is differentiable everywhere it
is a paraboloid, that is, Q = {(z1,%2,...,2n) € R |z, > x? + 2% +
-+ 22_,}. Now we consider the case that Q is not differentiable
everywhere and assume that S = {p1,...,px} is the set of all points at
which the boundary of Q is not differentiable. Since Aut.g(f2) preserves
a finite subset S of R™, it must have a fixed point p = Ii"i’z,‘:"ﬂ e R
and this implies that €2 is a properly convex cone with cone point p by
Lemma 13.

Since if 0,82 has a singular point ¢ then 9 is not differentiable at
all points of the ray ending (, 052 must be the closure of a properly
convex quasi-homogeneous projective (n — 1)-dimensional domain with
differentiable boundary by the hypothesis. Therefore by Theorem 5.10
of [4], the interior of 8,1 relative to RP! must be a strictly convex
projective domain with C! boundary and thus € is a strictly convex
cone whose boundary is C! everywhere except the cone point p. O

REMARK 18. From Theorem 8, we can see that every asymptotic
cone point of a quasi-homogeneous properly convex affine domain Q is a
singular point if dim AC(£2) > 1. So if we use the results in [4] together
with this observation, we can divide quasi-homogeneous properly convex
affine domains in R” into the following three classes, which leads us to
an another proof of Theorem 15 and 17.

(i) 8,9 is differentiable : This case occurs only when dim AC(2) =1
and it must be strictly convex by Proposition 5.5 of [4] and thus it
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is {(x1,%2,...,2n) € R |z, > 22 + 22+ --- + 22_,} by Theorem
5.9 of [4].

(if) 8,9 has a unique singular point : This case occurs only when
dim AC(Q) = n and 0,12 is differentiable.

(iii) 0,9 has infinitely many singular points : This case occurs either
when 2 < dim AC(Q2) < n — 1 or when dim AC(Q) = n and 9,92
has a singular point.

Now we get the following corollary for convex quasi-homogeneous
affine domains which may contain complete lines.

COROLLARY 19. Let ) be a convex quasi-homogeneous affine domain
such that the boundary of ) is everywhere differentiable except possibly
at a finite number of points. Then (2 is affinely equivalent to one of the
following:

(i) RY,

(ii) {(z,y) € R?|z >0,y >0},
(lll) {(1'1,"1/'2, s 71’.71) € R" I Tp > ‘,‘E% + ‘T% +et m%—l}?
(iv) RF x R,
(v) R* x {(z1,29,...,2n) ER" |z > 22+ 23 + -+ 22_,},
(vi) an affine space,
(vii) a strictly convex quasi-homogeneous cone.

Proof. Let ) be an n-dimensional convex quasi-homogeneous affine
domain in R™. If Q is properly convex, then it is one of (i), (ii), (iii) and
(vii) by Theorem 17.

Otherwise, either = R™ or Q = R¥ x € for some 0 < k < n and
(n— k)-dimensional properly convex domain ' by convexity. Obviously,
' is a quasi-homogeneous affine domain whose boundary is everywhere
differentiable except possibly at a finite number of points and thus €
must be affinely equivalent to R or {(z,y) € R?|z > 0,y > 0}, or a
paraboloid, or a strictly convex quasi-homogeneous cone by Theorem 17
again. But € can be neither {(z,y) € R?|z > 0,y > 0} nor a strictly
convex quasi-homogeneous cone because the products R* with them have
infinitely many singular points, which contradicts the hypothesis. This
completes the proof. O

In [4], we showed that every strictly convex quasi-homogeneous pro-
jective domain is a divisible projective domain. (Note that a paraboloid
is a quasi-homogeneous affine domain, but not a divisible affine domain.)
Actually it seems to be true that every irreducible (see [6] for a definition)
quasi-homogeneous convex projective domain is either homogeneous or
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divisible, which is proved under the condition that its automorphism
group is irreducible by Y. Benoist [2]. The following corollary is related
to this question.

COROLLARY 20. Let § be a convex quasi-homogeneous affine domain
such that the boundary of §2 is everywhere differentiable except possibly
at a finite number of points. Then € is either homogeneous or divisible.

Proof. Since domains of Corollary 19 except the case (vii) are all ho-
mogeneous it suffices to show that any strictly convex quasi-homogeneous
cone is either homogeneous or divisible. This follows from Proposition
5.15 of [4] that every strictly convex quasi-homogeneous projective do-
main which is not an ellipsoid has a discrete projective automorphism
group. This implies that a strictly convex quasi-homogeneous projec-
tive domain is divisible and so is a strictly convex quasi-homogeneous
cone. O

This Corollary shows that every quasi-homogeneous convex affine do-
main whose boundary is everywhere differentiable except possibly at a
finite number of points is either homogenous or covers a compact affinely
flat manifold.
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