• Title/Summary/Keyword: aerospace industry

Search Result 2,111, Processing Time 0.033 seconds

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Relationship Between Tool Rotating Speed and Properties of Friction Stir Welded Al 6005-T6 (알루미늄 합금 (Al6005-T6)의 마찰교반접합 시 공구의 회전속도와 접합 특성의 상관관계 연구)

  • Choi, Dooho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.94-99
    • /
    • 2019
  • Friction stir welding was first reported by TWI(The Welding Institute) in 1991, and this welding method has been rapidly used in various industrial areas such railway, automobile, aerospace and shipbuilding industry. Here, we study core characteristics of friction stir welding (FSW) applied to Al 6005-T6 extruded sheets, which is the typical alloy used for railway car bodies. With the fixed welding speed of 500 mm/min, the rotating tool speed was varied from 600 to 1800 RPM. The results of hardness measurement revealed that the hardness of nugget area is ~70% with respect to the parent material, and for the selected range of rotation speed, no clear dependence was observed and the hardness values close to the parent materials were achieved for the area located 5 mm away from the welding interface. The tension test shows that yield strength and tensile strength were slightly decreased with increasing RPM, with no observed difference for the elongation.

A design of UAV Simulation model for waypoint optimization method (웨이포인트 최적화 방법에 대한 UAV 시물레이션 모델의 디자인)

  • Niyonsaba, Eric;Jang, JongWook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • In recent years, Unmanned Aerial Vehicles (UAV) have been developed for both military and civilian activities in regions where the presence of onboard human pilots is risky or not necessary. However, UAV require a high demand of power to achieve its missions such as taking images/videos in a certain area or surveillance activities. Therefore, this situation triggers the need of techniques to reduce power consumption for UAV to complete its mission safely. One of the methods is to use a waypoint optimization procedure which deals with a pre-specified set of waypoints to find a minimum route to fly through those waypoints in order to reduce power consumption. In this paper, due to the UAV's multidisciplinary which makes it impossible to be represented as an analytical model, we design a simulation model of UAV using MATLAB Simulink and AeroSim Blockset, an analysis package in aerospace industry. The simulation model is then coupled with optimization algorithms along with a set of waypoints (flight path) in order to measure at which percentage power consumption can be minimized for UAV.

  • PDF

Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding (액상성형공정별 물리적/기계적 특성 비교 평가)

  • Park, Dong-Cheol;Kim, Tai-Gon;Kim, Seung-Hyeok;Shin, Do-Hoon;Kim, Hyeon-Woo;Han, Joong-won
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.304-310
    • /
    • 2018
  • Autoclave process has been remaining as one of the most robust and stable process in fabricating structural composite part of aerospace industry. It has lots of advantages, however exhibits some disadvantages or limitations in capital investment and operation. Recently, there have been various Out-of-Autoclave process being researched and developed to overcome those limitations. In this study, laminate specimens were fabricated using LCM (Liquid Composite Molding) process, regarded as one of potential OoA process. DB (Double bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion), VAP (Vacuum Assisted Process) and Autoclave process were used for laminate specimens. Void content, Thickness, Tg (Glass Transition Temperature), ILSS (Interlaminar Shear Strength) and Flexural strength properties were evaluated for comparison. It is verified that Autoclave based specimen has uniform thickness distribution, the lowest void content and outstanding mechanical properties. And, CAPRI based specimen exhibits relatively good physical and mechanical properties over DB and VAP based specimen and comparable mechanical properties with autoclave based specimen.

Design Development Process for Clothing of Upper Limb Assistive Wearable Soft Robot (상지 보조 소프트로봇의 의복화를 위한 디자인 개발 프로세스)

  • Hong, Yuhwa;Park, Juyeon;Nam, Yun Ja;Park, Daegeun;Cho, Kyu-Jin;Kim, Youn Joo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • This study proposes a design process for an upper limb assistive wearable soft robot that will enable the development of a clothing product for an upper limb assistive soft robot. A soft robot made of a flexible and soft material that compensates for the shortcomings of existing upper limb muscle strength assistive devices is being developed. Consequently, a clothing process of the upper limb assistive soft robot is required to increase the possibility of wearing such a device. The design process of the upper limb auxiliary soft robot is presented as follows. User analysis and required performance deduction-Soft robot design-upper limb assistive wearable soft robot prototype design and production-evaluation. After designing the clothing according to the design process, the design was revised and supplemented repeatedly according to the results of the clothing evaluation. In the post-production evaluation stage, the first and second prototypes were attached to actual subjects, and the second prototype showed better results. The developed soft robot evaluated if the functionality as a clothing function and the functionality as the utility of the device were harmonized. The convergence study utilized a process of reducing friction conducted through an understanding and cooperation between research fields. The results of this study can be used as basic data to establish the direction of prototype development in fusion research.

Design and Implementation of Integrated Production System for Large Aviation Parts (데이터 중심 통합생산시스템 설계 및 구현: 대형항공부품가공 사례)

  • Bae, Sungmoon;Bae, Hyojin;Hong, Kum Suk;Park, Chulsoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.208-219
    • /
    • 2021
  • In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.

Recent Status and Future Prospects on On-Orbit Servicing (궤도상서비싱 개발 동향 및 향후 전망)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.559-572
    • /
    • 2022
  • Recently, with the success of the world's first On-Orbit service (OOS) mission MEV (Mission Extension Vehicle)-1 in 2020, interest in OOS is increasing at home and abroad. In particular, the mission of OOS and active debris removal (ADR) service, which was difficult to find in the old space era in the past, is expected to enter the new space industry in the near future. Therefore, this paper examines the development cases of domestic and foreign OOS technologies, and describes the characteristics of major technologies required, domestic status and development potential, and the possibility of future OOS mission development. The technology trends and future prospects of OOS described in this paper are expected to be useful reference materials for further researching related fields in domestic situations where related research is insufficient.

Impact of Fourth Industrial Revolution on Airport Management System: Moderator Effect of Convergence and Leadership (4차 산업혁명이 공항경영시스템에 미치는 영향 : 융합 및 리더십의 조절효과)

  • Lee, Yung-Kil;Baek, Jeong-Sun;Park, Sung-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.289-303
    • /
    • 2022
  • The purpose of this study verify to influence the effect of the 4th industrial revolution recognized by airport operators on the airport management system and the moderator effects of convergence and leadership between these influence relationships. Data collected through a survey of airport operators using simple random sampling at six international airports in Korea. Data analysis performed using Structural Equation Modeling. The research results found that the 4th industrial revolution had a positive effect on the airport management system. Also, moderator effects of convergence and leadership found significant statistically. In this paper, we asserts that it should be reconstructed the airport management system as a system suitable for the era of the 4th industrial revolution. This paper provide theoretical data and directions for empirical research to airport researchers, and implications for airport enterprise managers and airport policy planners. The findings of this study are particularly helpful for international airports that have adopted the technologies of the Fourth Industrial Revolution.

Development of Drag Augmentation Device for Post Mission Disposal of Nanosatellite (초소형위성의 폐기 기동을 위한 항력 증대 장치 개발)

  • Kim, Ji-Seok;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • In this paper, we described the development of a drag augmentation device for nanosatellite. Recently, space industry has entered the New Space era, and barriers to entry into Low Earth Orbit (LEO) for artificial objects such as small rockets and nanosatellite mega constellations have been significantly lowered. As a result, the number of space debris is increasing exponentially, and it is approaching as a major threat to satellite currently in operation as well as satellites to be launched in near future. To prevent this, international organizations like Inter-Agency Space Debris Coordination Committee (IADC) have been proposed space debris mitigation guidelines. The Korea Aerospace Research Institute (KARI) conducted KARI Rendezvous & Docking demonstration SATellite (KARDSAT) project, the first nanosatellites for rendezvous and docking technology demonstration in Korea, and we also developed drag augmentation device for KARDSAT Target nanosatellite that complied with the international guideline of post-mission disposal.

Evaluation of delamination in the drilling of CFRP composites

  • Feroz, Shaik;Ramakrishna, Malkapuram;K. Chandra, Shekar;P. Dhaval, Varma
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.375-390
    • /
    • 2022
  • Carbon Fiber Reinforced Polymer (CFRP) composite provides outstanding mechanical capabilities and is therefore popular in the automotive and aerospace industries. Drilling is a common final production technique for composite laminates however, drilling high-strength composite laminates is extremely complex and challenging. The delamination of composites during the drilling at the entry and exit of the hole has a severe impact on the results of the holes surface and the material properties. The major goal of this research is to investigate contemporary industry solutions for drilling CFRP composites: enhanced edge geometries of cutting tools. This study examined the occurrence of delamination at the entry and exit of the hole during the drilling. For each of the 80°, 90°, and 118°point angle uncoated Brad point, Dagger, and Twist solid carbide drills, Taguchi design of experiments were undertaken. Cutting parameters included three variable cutting speeds (100-125-150 m/min) and feed rates (0.1-0.2-0.3 mm/rev). Brad point drills induced less delamination than dagger and twist drills, according to the research, and the best cutting parameters were found to be a combination of maximum cutting speed, minimum feed rate, and low drill point angle (V:150 m/min, f: 0.1 mm/rev, θ: 80°). The feed rate was determined to be the most efficient factor in preventing hole entry and exit delamination using analysis of variance (ANOVA). Regression analysis was used to create first-degree mathematical models for each cutting tool's entrance and exit delamination components. The results of optimization, mathematical modelling, and experimental tests are thought to be reasonably coherent based on the information obtained.