• Title/Summary/Keyword: aerosol optical thickness

Search Result 70, Processing Time 0.033 seconds

Characteristics of Atmospheric Aerosol Optical Thickness over the Northeast Asia Using TERRA/MODIS Data during the Year 2000~2005 (동북아시아 지역에서 TERRA/MODIS 위성자료를 이용한 2000~2005년 동안의 대기 에어러솔 광학두께 변화 특성)

  • Lee, Dong Ha;Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Joon
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.85-96
    • /
    • 2006
  • The six-year (2000~2005) record of aerosol optical thickness (AOT or $\tau$) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed over the Northeast Asia. The MODIS AOT standard products (MOD04_L2) over both ocean and land were collected to evaluate the spatial and temporal variability of the atmospheric aerosols over the study region ($32^{\circ}N{\sim}42^{\circ}N$ and $115^{\circ}E{\sim}133^{\circ}E$). The monthly averaged AOT result revealed slight changes(${\pm}0.002{\tau}/month$), which was almost unchangeable, over Korea. In contrast, the large AOT values (> 0.6) and a significant AOT increase (> 0.004 ${\tau}/month$) over East China were observed. For the analysis of spatio-temporal variability of AOT values, study area was divided by six sectors (I: North-East China, II: East China, III: Yellow Sea, IV: Korea Peninsular, V: East Sea, and VI: South Sea and Western part of Japan). The considerable result showed that particularly high AOT contribution was observed over sector I (32.5%) and II (25.5%) where some major urban and industrialized areas and agricultural fields are located and other cases were observed 13.2%, 14.6%, 7.1%, 7.0% over sector III, IV, V, and VI, respectively. In addition, yearly AOT changes based on seasons are observed differently at each sector but increasing trends reveal in summer and fall over all sectors.

Application of MODIS Aerosol Data for Aerosol Type Classification (에어로졸 종류 구분을 위한 MODIS 에어로졸 자료의 적용)

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In order to classify aerosol type, Aerosol Optical Thickness (AOT) and Fine mode Fraction (FF), which is the optical thickness ratio of small particles$(<1{\mu}m)$ to total particles, data from MODIS (MODerate Imaging Spectraradiometer) aerosol products were analyzed over North-East Asia during one year period of 2005. A study area was in the ocean region of $20^{\circ}N\sim50^{\circ}N$ and $110^{\circ}E\simt50^{\circ}E$. Three main atmospheric aerosols such as dust, sea-salt, and pollution can be classified by using the relationship between AOT and FF. Dust aerosol has frequently observed over the study area with relatively high aerosol loading (AOT>0.3) of large particles (FF<0.65) and its contribution to total AOT in spring was up to 24.0%. Pollution aerosol, which is originated from anthropogenic sources as well as a natural process like biomass burning, has observed in the regime of high FF (>0.65) with wide AOT variation. Average pollution AOT was $0.31{\pm}0.05$ and its contribution to total AOT was 79.8% in summer. Characteristic of sea-salt aerosol was identified with low AOT (<0.3), almost below 0.1, and slightly higher FF than dust and lower FF than pollution. Seasonal analysis results show that maximum AOT $(0.33{\pm}0.11)$ with FF $(0.66{\pm}0.21)$ in spring and minimum AOT $(0.19{\pm}0.05)$, FF $(0.60{\pm}0.14)$ in fall were observed in the study area. Spatial characteristic was that AOT increasing trend is observed as closing to the eastern part of China due to transport of aerosols from China by the prevailing westerlies.

Optical Properties of Aerosol at Gongju Estimated by Ground-based Measurements Using Sky-radiometer (스카이라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성)

  • Kwak, Chong-Heum;Suh, Myoung-Seok;Kim, Maeng-Ki;Kwak, Seo-Youn;Lee, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.790-799
    • /
    • 2005
  • We investigate the optical properties of aerosols over Gongju by an indirect method using the pound measurement, Sky-radiometer. The analysis period is from January to December, 2004. Skyrad. pack.3 is used to estimate the optical properties, such as the aerosol optical thickness (AOT), single scattering albedo (SSA), ${\AA}ngstron$ exponent $({\alpha})$ and size distribution, of aerosols from the ground measured radiance data. And qualify control is applied to minimize the cloud-contaminated data and improve the quality of analysis results. The 12-month average of AOT, ${\alpha}$, and SSA are 0.46, 1.14, and 0.91, respectively. The average volume spectra of aerosols shows a bi-modal distribution, the first peak at fine mode and the second peak at coarse mode. AOT and coarse particles clearly increases while SSA decreases during the Asian dust events. The optical properties of aerosols at Gongju vary with?seasons, but those are not influenced by the wind direction.

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment (동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.184-196
    • /
    • 2012
  • Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Temporal and Spatial Distributions of the Surface Solar Radiation by Spatial Resolutions on Korea Peninsula (한반도에서 해상도 변화에 따른 지표면 일사량의 시공간 분포)

  • Lee, Kyu-Tae;Zo, Il-Sung;Jee, Joon-Bum;Choi, Young-Jean
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • The surface solar radiations were calculated and analyzed with spatial resolutions (4 km and 1 km) using by GWNU (Gangneung-Wonju National University) solar radiation model. The GWNU solar radiation model is used various data such as aerosol optical thickness, ozone amount, total precipitable water and cloud factor are retrieved from Moderate Resolution Imaging Spectrometer (MODIS), Ozone Monitoring Instrument (OMI), MTSAT-1R satellite data and output of the Regional Data Assimilation Prediction System(RDAPS) model by Korea Meteorological Administration (KMA), respectively. The differences of spatial resolutions were analyzed with input data (especially, cloud factor from MTSAT-1R satellite). And the Maximum solar radiation by GWNU model were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud factor.

Satellite-Measured Vegetation Phenology and Atmospheric Aerosol Time Series in the Korean Peninsula (위성기반의 한반도 식물계절학적 패턴과 대기 에어로졸의 시계열 특성 분석)

  • Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.4
    • /
    • pp.497-508
    • /
    • 2013
  • The objective of this study is to determine the spatiotemporal influences of climatic factors and atmospheric aerosol on phenological cycles of the Korea Peninsular on a regional scale. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Study results showed that phenological characteristics were similar among evergreen forest, deciduous forest, and grassland, while the inter-annual vegetation index amplitude of mixed forest was differentiated from the other forest types. Forest types with high VI amplitude reached their maximum VI values earlier, but this relationship was not observed within the same forest type. The phase of VI, or the peak time of greenness, was significantly influenced by air temperature. Aerosol optical thickness (AOT) time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VIs. Weak relationships between AOT amplitude and EVI amplitude only indicates that there would be potential impacts of aerosols on vegetation growth in the long run.

  • PDF

Improvement of Optical 3D Scanner Performance Using Atomization-Based Spray Coating

  • Valinasab, Behzad;Rukosuyev, Maxym;Lee, Jason;Ko, Junghyuk;Jun, Martin B.G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • The scanning quality can be influenced by reflective abilities of a surface. Transparency and glossiness of a surface can highly limit the scanning results. Various techniques have been developed to solve problems of reflective and transparent surfaces. As one of the most feasible and convenient solutions, a thin layer of coating with proper specifications is sprayed on surface for eliminating the problems of the surfaces. As the main goal is to keep the object geometry unchanged, then it is important to coat the surface with layers less than one micrometer in thickness. For this purpose, a newly designed atomization-based spray system has been developed and tested in sets of experiments to study its efficiency on scanning results while objects with the surface are in use. This paper presents the spray design process and then studies and compares the 3D scanning results of the surfaces coated with atomization-based and aerosol sprays.

Difference between Collection 4 and 5 MODIS Aerosol Products and Comparison with Ground based Measurements (Collection 4 와 Collection 5 MODIS 에어러솔 분석 자료의 차이와 지상관측자료와의 비교)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2008
  • The aerosol retrieval algorithm for the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements was updated recently. This paper reports on the comparison and validation of two latest versions (Collection 4 and 5, shortly C004 and C005) of the MODIS aerosol product over northeast Asian region. The differences between the aerosol optical thickness (AOT) from the C004 and C005 retrieval algorithms and the correlation with ground based AERONET sunphotometer observations are investigated. Over the study region, spatially averaged annual mean AOT retrieved from C005 algorithm $(AOT_{C005})$ is about 0.035 AOT (5%) less than the C004 counterparts. The linear correlations between MODIS and AERONET AOT also are R=0.89 (slope=0.86) for the C004 and R=0.95 (slope=1.00) for the C005. Moreover, the magnitude of the mean error in $AOT_{C005}$, difference between MODIS AOT and AERONET AOT, is 40% less than that in $AOT_{C004}$.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.