• 제목/요약/키워드: aerodynamic forces

검색결과 350건 처리시간 0.025초

Flutter and Buffeting Control of Long-span Suspension Bridge by Passive Flaps: Experiment and Numerical Simulation

  • Phan, Duc-Huynh;Nguyen, Ngoc-Trung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.46-57
    • /
    • 2013
  • Flutter stability and buffeting response have been the topics of most concern in the design state of long-span suspension bridges. Among approaches towards the aerodynamic stability, the aerodynamic-based control method which uses control surfaces to generate forces counteracting the unstable excitations has shown to be promising. This study focused on the mechanically controlled system using flaps; two flaps were attached on both sides of a bridge deck and were driven by the motions of the bridge deck. When the flaps moved, the overall cross section of the bridge deck containing these flaps was continuously changing. As a consequence, the aerodynamic forces also changed. The efficiency of the control was studied through the numerical simulation and experimental investigations. The values of quasi-steady forces, together with the experimental aerodynamic force coefficients, were proposed in the simulation. The results showed that the passive flap control can, with appropriate motion of the flaps, solve the aerodynamic instability. The efficiency of the flap control on the full span of a simple suspension bridge was also carried out. The mode-by-mode technique was applied for the investigation. The results revealed that the efficiency of the flap control relates to the mode number, the installed location of the flap, and the flap length.

1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석 (Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade)

  • 조봉현;이창수;최성옥;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

측풍 시 철도차량에 가해지는 공기역학적 하중의 측정 (Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind)

  • 권혁빈;유원희;조태환
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.91-98
    • /
    • 2011
  • 측풍 시 AREX 열차에 가해지는 공기역학적 하중을 측정하기 위하여 풍동시험이 수행되었다. 5% 축소 시험 모델은 연결부, 하부 및 대차부 등을 포함하여 가능한한 자세하게 모델링되었다. 시험에 사용된 풍동은 폭 4m $\times$ 높이 3m 의 시험부를 가진 한국항공우주연구원(KARI)의 중형 아음속 풍동이다. 두 종류의 선로 모형에 놓여진 열차 모델에 가해지는 공기역학적 하중과 모멘트는 요각에 따라 도시되었으며, 실험 조건에 따른 공력 계수의 특성이 분석되었다.

균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구 (Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow)

  • 부정숙;양종필;김창수;신영곤
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과 (The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion)

  • 오현택;최항철;정진택;김광호
    • 한국항공우주학회지
    • /
    • 제35권9호
    • /
    • pp.753-760
    • /
    • 2007
  • 3-D 날개짓 운동은 왕복운동과 회전운동으로 구성된다. 3-D 날개짓 운동은 왕복운동하는 동안 날개 길이방향의 유동이 발생된다. 또한 각각의 왕복운동의 끝에서 날개 회전에 의하여 회전에 의한 순환이 발생한다. 본 연구에서는 날개 길이방향 유동과 날개 회전이 3-D 날개짓 운동의 공기역학적 특성에 미치는 영향을 알아보기 위하여 3-D 날개짓 운동과 2-D 병진운동을 비교하였다. 각각의 날개짓 운동에서 받음각과 레이놀즈수에 따라 공력을 측정하였다. 2-D 병진운동의 공력이 3-D 날개짓 운동의 공력 보다 크다. 하지만 3-D 날개짓 운동시 발생되는 양력은 왕복운동의 중반부에서 받음각 $50^{\circ}$까지 증가하였고 2-D 병진운동시 발생되는 양력은 받음각 $30^{\circ}$이상에서 감소하였다. 또한 각각의 왕복운동의 끝에서 날개 회전에 의하여 공력이 급격하게 증가하였다.

편대비행에서 후방 항공기의 위치 안전성 분석 (Positional Stability Analysis of Trailing Aircraft in Formation Flight)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제24권2호
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.