• Title/Summary/Keyword: aerodynamic distribution

Search Result 284, Processing Time 0.025 seconds

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

Effect of moisture content on terminal velocities of domestic wheat and foreign materials (함수율에 따른 우리밀과 이물의 종말속도에 미치는 영향)

  • Choi, Eun-Jung;Kim, Hoon;Kim, Sang-Suk;Kim, Oui-Woung
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.746-752
    • /
    • 2016
  • This research was carried out to identify aerodynamic property as a function of moisture content for designing equipment such as for post-harvest management. Terminal velocity of two wheat varieties {Backjjung (B) and Jogyeong (J)} with selected sound, damaged kernel and foreign materials (Wheat stick, Wheat husks) were measured with a designed vertical wind column at different moisture contents from about 9 to 30% wet basis. The results showed that terminal velocity of wheat and foreign materials except of Jogyeong's husks (p<0.05) had a significant difference at p<0.001. With increasing moisture content, the aerodynamic property values of the kernels and foreign materials of the two wheat varieties increased linearly. In detail, terminal velocity of sound and damaged kernel increased from 5.46 to 7.13 m/sec (B) and 7.48 to 8.60 m/sec (J), damaged kernel from 5.91 to 7.00 m/sec (B) and 6.48 to 7.75 m/sec (J). For foreign materials the terminal velocity of wheat stick increased from 2.92 to 4.07 m/sec (B) and 3.74 to 5.22 m/sec (J) whereas that of husks from 1.07 to 1.85 m/sec (B) and 2.02 to 2.33 m/sec (J) each. For air separation of wheat and foreign materials, the air flow should be less than 5.22 m/sec due to the range (1.07~5.22 m/sec) of foreign materials in wheat.

Estimation of Potential Evapotranspiration using LAI (LAI를 고려한 잠재증발산량 추정)

  • Kim, Joo-Hun;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.1-13
    • /
    • 2005
  • In the process of a hydrology circulation, evapotranspiration is considered a very important factor to build a plan for the development of water resources and to operate water resources system. This study purposes to estimate daily potential evapotranspiration quantity in consideration of energy factors of the surface by using spatial information such as Landsat TM (ETM+) data, DEM and Landcover. Kyounan-cheon, Han River is selected as a target area, and landcover is divided by vegetation and non-vegetation covered area. Penman-Monteith equation which considers leaf-area index is used to estimate potential evapotranspiration quantity of vegetation covered area. The combination method (energy burget and aerodynamic method) is used in non-vegetation covered area. Among the input data for estimating potential evapotranspiration, NDVI, SR and Albedo is formed by Landsat, TM and ETM+ from 1986 through 2002. ground heat flux is estimated by using NDVI distribution map, LAI distribution map is drawn by using SR distribution map. The result of estimation shows that the average potential evapotranspiration in the whole basin is about 1.8-3.2mm/day per each cell. THe results of estimating potential evapotranspiration quantity by each landcover are as follows; water surface 3.6-4.9mm/day, city 1.4-3.1mm/day, bareland 1.4-3.5mm/day, grassland 1.7-3.7mm/day, forest 1.7-3.0mm/day and farmland 1.8-3.6mm/day. The potential evapotranspiration quantity is underestimated in comparison with observed evaporation data by evaporation pan, but it is considered that it has physical propriety.

  • PDF

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF

Investigation of Aerosol Number Concentration at Gosan Site in Jeju, Korea

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site in Jeju, Korea, from March 2010 to March 2011. And then the atmospheric aerosol number concentration, the temporal variation and the size distribution of aerosol number concentration have been investigated. The aerosol number concentration varies significantly from 748 particles/$cm^3$ to zero particles/$cm^3$. The average number concentration in small size ranges are very higher than those in large size ranges. The number concentrations in the size range 0.25~0.28 ${\mu}m$, 0.40~0.45 ${\mu}m$ and 2.0~2.5 ${\mu}m$ are about 84 particles/$cm^3$, 2 particles/$cm^3$ and 0.4 particles/$cm^3$, respectively. The number concentrations in range of larger than 7.5 ${\mu}m$ are below 0.001 particles/$cm^3$. The seasonal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. And strong amplitudes of diurnal variations of entire averaged aerosol number concentration are not observed. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The size-fractioned aerosol number concentrations in size range 0.8~4.0 ${\mu}m$ during nighttime are evidently higher than during daytime, but similar levels are appeared in other size range. The seasonal differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable seasonal differences are observed for larger size than 0.7 ${\mu}m$.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

Static Aeroelastic Optimization of a Composite Wing Using Genetic Algorithm (유전자 알고리즘을 이용한 복합재료 날개의 정적 공탄성 최적화)

  • Kim, Dong-Hyun;Lee, In
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • Today, the use of composite materials become an essential part in the design and manufacturing process of the flight vehicles to reduce the structural weight. Since the structural properties can be varied largely due to the stacking sequence of ply angles, it is very important problem to determine the optimized ply angles under a design objective. Thus, in this study, the analysis of static aeroelastic optimization of a composite wing has been performed. An analytical system to calculate and optimize tile aero-structural equilibrium position has been developed and incorporated with the genetic algorithm. The effects of stacking sequence on the structural deformation and aerodynamic distribution have been studied and calculated with the condition of minimum structural deformation for a swept-back composite wing. For the set of practical stacking angles, the design results to maximize the performance of static aeroelasticity are also presented.

  • PDF

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Dust Concentration Monitoring in Korean Native Cattle Farm according to Sampling Location and TMR Process (한우사 내부 위치 및 TMR 배합 작업에 따른 분진 모니터링)

  • Park, Gwanyong;Kwon, Kyeong-Seok;Lee, In-bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.75-83
    • /
    • 2017
  • Many parts of problems in livestock industry today are associated with organic dust. Endotoxin and toxic gasses on the surface of dust and dust itself can cause aesthetic displeasure and respiratory disease. It also reduces livestock productivity by suppressing immunity of animals and carrying microbes causing animal disease. However, dust level of cattle farm was rarely reported in Korea, and regulation for cattle farm worker does not exist. In this paper, dust concentration and environmental condition were regularly monitored in a commercial Korean native cattle farm. The measurement was conducted according to location and working activities. From the measurement, distribution of dust concentration was affected by wind environment, as the result of natural ventilation. TMR mixer was a major source of dust in target cattle house. The maximum inhalable dust concentration was 637.8 times higher than exposure limit as feed dropped into the TMR mixer. It was expected that dust generation could be affected by particle size and drop height of feed. This study suggests potential risk of dust in cattle farm, and necessity for latter study. Effect of aerodynamic condition and TMR processing should be investigated for dust reduction study.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.