• 제목/요약/키워드: aerodynamic distribution

검색결과 284건 처리시간 0.025초

2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구 (NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS)

  • 최홍일;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

복합재료 테일러링 기법을 이용한 저진동 로터 개발 (Use of Composite Tailoring Techniques for a Low Vibration Rotor)

  • 이주영;박일주;정성남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구 (A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System)

  • 문지훈;신용현;김태성;강상우
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

연속일체형 날개-동체 타입 UCAV 형상의 저속 종방향 공력특성에 대한 전산유동해석 (COMPUTATIONAL FLUID DYNAMICS OF THE LOW-SPEED LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR BWB TYPE UCAV CONFIGURATION)

  • 박상현;장경식;심호준;신동진;박수형
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.48-54
    • /
    • 2016
  • In the present work, numerical simulations were conducted on the scaled model of the BWB type UCAV in the subsonic region using ANSYS FLUENT V15. The prediction method was validated through comparison with experimental results and the effect of the twisted wing was investigated. To consider the transitional flow phenomenon, ${\gamma}$ transition model based on SST model was adopted. The coefficients of lift, drag and pitching moment were compared with experimental results and the pressure distribution and streamlines were investigated. The twisted wing decreases the lift force but increases lift-to-drag ratio through delay of stall and leading edge vortex's movement to the front, also the non-linearity of the pitching moment is decreased.

Spin 안정형 구형 로켓트에 관한 이론 및 실험적 연구 (Theoretical and Experimental Study on a Spin-Stabilized Spherical Rocket)

  • 이종훈
    • 한국국방경영분석학회지
    • /
    • 제3권1호
    • /
    • pp.83-96
    • /
    • 1977
  • The combustion chamber and nozzle of an end burning, small spherical rocket is designed. A spherical external shape has a number of advantages such as fixed center-of-gravity and minimum aerodynamic precession torques during flight and a better mass distribution for gyro-stabilization as contrasted to a conventional ogive rocket shape. It is shown that the cross-sectional variation of the end burning solid propellant with length is an exponential geometry to provide a constant thrust-weight ratio of the rocket device during the propellant burning period, and that the factors which affect the attainment of the constant relationship of thrust to weight in the design are the initial propellant area, initial weight of the rocket and propellant density. The measurement of the transient thrust in the ground static test using black powder propellant supports the predicted results. A wind tunnel having a $30{\times}30{\times}75cm$ test section and Mach number 0.11 is constructed, and a simple balance-type device is designed for the measurement of the drag of a spinning sphere. The experimental results indicate that the. spinning has no effect on the magnitude of the drag up to the Reynolds number $3{\times}10^5$. Numerical computation of the flight trajectories for various launching angles is presented, and the gyro-stabilization of spinning sphere is discussed.

  • PDF

黃砂의 量的推定을 위한 基礎硏究 (Basic Research on the Quantitative Estimation of Yellow Sand)

  • 김동술
    • 한국대기환경학회지
    • /
    • 제6권1호
    • /
    • pp.11-21
    • /
    • 1990
  • To quantitatively estimate the effect of yellow sand(loess) fromt he Northern China, various soil sources having similar chemical compositions to yellow sands should be separated and identified. After that, mass contribution for yellow sand can be calculated. The study showed that it was impossible to solve this problem by the traditional bulk analyses. However, particle-by-particle analysis by a CCSEM (computer controlled scanning electron microscope) gave enormous potentials to solve it. To perform this study, seven soil source data analyzed by CCSEM were obtained from Texas, U.S.A. Initially, each soil date was classified into two groups, coarse and fine particle groups since the particle number distribution showed a minimum occurring at 5.2$\mu$m of aerodynamic diameter. Particles in each group were then classified into one of the 283 homogeneous particle classes by the universal classification rule which had been built by an expert system in the early study. Further, mass fractions and their uncertainties for each class in each source were calculated by the Jackknife method, and then source profile matrix for the 7 soil sources was created. To use the profile matrix in the study of source contribution, it is necessary to test the degree of collinearity among sources. The profiles were tested by the singular value decomposition method. As a result, each soil source characterized by artificially created variables was totally independent each other and is ready to use in source contribution studies as a receptor model.

  • PDF

복합재료 테일러링 기법을 이용한 저진동 로터 개발 (Use of Composite Tailoring Techniques for a Low Vibration Rotor)

  • 이주영;박일주;정성남
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

연탄제조 공장의 작업장별 석탄분진의 농도에 관한 연구 (A Study on Airborne Coal Dust Concentration at each Work Site in Coal Briquet Factory)

  • 신대윤;오정룡;강공언
    • 한국환경보건학회지
    • /
    • 제18권1호
    • /
    • pp.6-11
    • /
    • 1992
  • This study was carried out to investigate exposure level, size distribution, and respirable mass fraction of airborne coal dust and heavy metal concentration of respirable coal dust at each work site in coal briquet factory from July 1991 to September 1991. Geometric mean of total dust concentration was 10.88mg/m$^{3}$ at storage shop, 8.22mg/m$^{3}$ at pulverize shop, and 3.79mg/m$^{3}$ at rotary press shop, respectively, but those at storage and pulverize shop were higher than TLV. Geometric mean of respirable coal dust concentration wat 1.03mg/m$^{3}$ at storage shop, 0.78mg/m$^{3}$ at pulverize shop, and 0.55mg/m$^{3}$ at rotary press shop, respectively, which were lower than TLV Aerodynamic 50% cutoff diameter of the suspended coal dust was 5$\mu$m at rotary press shop and 6.8$\mu$m at storage shop, ranged to thoracic particulate defined by ACGIH, and deposited in the region of repiratory system. The mass fraction rate of respirable dust to the total coal dust was 26.2% at rotary press shop, 18.8% at storage shop, and 13.8% at pulverize shop, respectively. Heavy metal concentrations of the respirable coal dust were 0.028mg/m$^{3}$ ib Fe, 0.0081mg/m$^{3}$ in Cu, and 0.0039mg/m$^{3}$ in Pb.

  • PDF