• Title/Summary/Keyword: aerodynamic distribution

Search Result 284, Processing Time 0.031 seconds

A Study on Correlation Analysis between Aerodynamic Diameter and Optical Diameter Using Axial Flow Cyclone (축류형 사이클론을 이용한 공기역학경과 광학직경 상관관계 분석에 관한 연구)

  • Eunjung Kim;Kyung-Ryeo Park;Jieun Heo;Churl-Hee Cho;Yun-Haeng Joe
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.155-164
    • /
    • 2023
  • APS (Aerodynamic Particle Sizer) and OPC (Optical Particle Counter) have been widely used to real-time measurement of indoor and outdoor aerosols. The APS measures the size distribution based on an aerodynamic diameter, while the OPC uses optical diameter to measure the size distribution of aerosols. Since obtaining a size distribution based on aerodynamic diameter is important to understand aerosol characteristics, lots of researcher had been developed experimental equations which can convert optical diameter into aerodynamic diameter. However, previous studies have conducted repeated experiments on particles having a single diameter. In this study, an experimental method of converting optical diameter into aerodynamic diameter through a single experiment was presented. The collection efficiencies of an axial cyclone were measured using APS and OPC at the same time, and the correlation equation between aerodynamic diameter and optical diameter was driven through a theoretical model. Using the proposed method, the size distribution of NaCl particles measured by OPC showed a high correlation with the size distribution obtained by APS (0.93 of R-squared value). In the tests conducted on ISO A1, A2, and A4 test particles, the converted OPC size distribution tended to be similar to the APS size distribution, and for each of test particles (ISO A1, A2, and A4), the R-squared values for the APS particle size distribution were 0.75, 0.86, and 0.89, respectively.

Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings

  • Yong Chul Kim;Shuyang Cao
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.249-261
    • /
    • 2023
  • Aerodynamic force coefficients are generally prescribed by an ensemble average of ten and/or twenty 10-minute samples. However, this makes it difficult to identify the exact probability distribution and exceedance probability of the prescribed values. In this study, 12,600 10-minute samples on three tall buildings were measured, and the probability distributions were first identified and the aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (cumulative probabilities) of wind load were then evaluated. It was found that the probability distributions of the mean and fluctuating aerodynamic force coefficients followed a normal distribution. The ratios of aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (Cf,Non) to the ensemble average of 12,600 samples (Cf,Ens), which was defined as an adjusting factor (Cf,Non/Cf,Ens), were less than 2%. The effect of coefficient of variation of wind speed on the adjusting factor is larger than that of the annual non-exceedance probability of wind load. The non-exceedance probabilities of the aerodynamic force coefficient is between PC,nonex = 50% and 60% regardless of force components and aspect ratios. The adjusting factors from the Gumbel distribution were larger than those from the normal distribution.

A Study on the Pressure Distribution in the Centrifugal Compressor Channel Diffuser at Design and Off-Design Conditions (설계 및 탈설계점에서의 원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.548-554
    • /
    • 2000
  • The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed far various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

  • PDF

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.

A Study on Pressure Distributions in a Centrifugal Compressor Channel Diffuser (원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Gang, Jeong-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.507-513
    • /
    • 2001
  • Time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates are investigated. Pressure distributions from the impeller exit to the channel diffuser exit are measured for various flow rates from choke to near surge condition, and the effects of operating condition are discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

Experimental Study on the Aerodynamic Performance Characteristics for Various Design Factors in the Maximum Flowrate Range of a Cross-Flow Fan (관류홴의 최대유량역에서 설계인자 변화에 따른 공력성능 특성에 관한 실험적 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.44-49
    • /
    • 2005
  • The aerodynamic performance of an indoor room air-conditioner using a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this study is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance in the maximum flowrate range of a cross-flow fan. The design factors considered in this study are a rear-guider clearance, a stabilizer cutoff clearance, and a stabilizer setup angle, respectively. Aerodynamic performances including maximum flowrate and power show the biggest magnitude distribution in the case of $45^{\circ}$, the stabilizer setup angle as well as nearly similar magnitude distribution regardless of the stabilizer cutoff clearances. Moreover, the more a rear-guider clearance increases, the more the magnitude of maximum flowrate and power increases.

  • PDF

A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics (성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

Design Optimization of a Single-Stage Transonic Axial Compressor and Test Evaluation of Its Aerodynamic Performance (1단 천음속 축류압축기의 최적 설계 및 공력 성능 시험 평가)

  • Park, Tae Choon;Kang, Young-Seok;Hwang, Oh-Sik;Song, Ji-Han;Lim, Byeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The aerodynamic performance of a single-stage transonic axial compressor was experimentally evaluated by measuring pressure and temperature distribution at the inlet and outlet of the compressor. The compressor was developed by Korea Aerospace Research Institute through multidisciplinary design optimization (MDO) method, especially integrating aerodynamic performance and structural stability. The test results show that the pressure ratio is 1.65 and the efficiency is 85.8 % at design point, where the corrected speed is 22,000 rpm and the corrected mass flow rate is 15.4 kg/s, and it has a good agreement with the design target and computational results. The distribution of pressure ratio is very steep at design speed, compared with the trend of other subsonic compressors. Also the static pressure distribution on the stator casing shows that the blade loading is gradually increasing through the stage as designed.

Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave (공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • Kwon, Hyeok-Bin;Kim, Yu-Shin;Lee, Dong-Ho;Kim, Moon-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF